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Chapter 1

Some PDEs in biological context

1.1 Introduction

This course is devoted to the analysis of some partial differential equations arising
in life sciences.

1.2 The Fischer-KPP Equation

The Fischer-KPP Equation writes:

ut = uxx + u(1 − u), t ∈ R+, x ∈ R (1.1)

It is a typical reaction-diffusion equation. In (1.1), uxx is the diffusion, while
u(1 − u) is the reaction term. R.A. Fisher1 proposed this equation to describe the
spatial spread of an advantageous allele, and explored its traveling wave solutions-
KPP equation. Kolmogorov, Pikovsky and Piskunov [46] proposed a mathematical
analysis for the traveling waves solutions of the equation. For an accessible math-
ematical analysis, we refer to [63]. A detailed analysis of this equation will be
provided in chapter 4.
Exercise 1.

1. Find constant in time solutions of (1.1).

1Ronald Fisher (or Sir Ronald Aylmer Fisher) born Feb 17 1890 in London- died, Jul 29 1962
in Adelaide, Australia, is highly recognized for his contributions in statistics such as the analysis of
variance (ANOVA model) which is for example widely used in bio-statistics and biomedical appli-
cations. He was indeed the first to introduce the term of variance. He is mentioned in this course as
the first to propose Equation (1.1) in the article The wave of advance of advantageous genes [30].
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6 CHAPTER 1. SOME PDES IN BIOLOGICAL CONTEXT

2. We look for solutions of (1.1) which write:

u(x, t) = v(x − ct)

with c ∈ R and v a function from R to R. Prove that v must satisfy a second
order differential equation (ODE). Write it as a two dimensional ODE of
order 1.

1.3 Hodgkin-Huxley

Action potential propagation is a crucial phenomenon for information process in
the nervous system and particularly in the brain. One of the paradigmatic models,
which has been proposed to describe action potential propagation, is the Hodgkin-
Huxley model. Written initially in 1952, see [40], for the description of the elec-
trical activity of the squid giant axon, its formalism has served as basis of number
of models widely used in Mathematical Neuroscience, see for example [3, 4, 5,
19, 31, 38, 49, 54] and references therein cited. At that time, Hodgkin and Huxley
used the new voltage clamp technique to maintain constant the membrane poten-
tial. This technique allowed them to elaborate and fit the functional parameters of
their model of four ODEs with their experiments. Basically, the model is obtained
by considering the cell as an electrical circuit. The membrane acts as a capacitor
whereas ionic currents result from ionic channels acting as variable voltage de-
pendent resistances. The model takes into account three ionic currents: potassium
(K+), sodium (Na+) and leakage (mainly chlorure, Cl−). The Hodgkin-Huxley
(HH) system reads as:

CVt = I + gNam3h(ENa − V ) + gKn4(EK − V ) + gL(EL − V )
nt = αn(V )(1 − n) − βn(V )n
mt = αm(V )(1 − m) − βm(V )m
ht = αh(V )(1 − h) − βh(V )h,

(1.2)
where subscript t stands for derivative d

dt and where I is the external membrane
current, C is the membrane capacitance, gi, Ei, i ∈ {K, Na, L} are respectively
the maximal conductances and the (shifted) Nernst equilibrium potentials. The
functions α(V ) and β(V ) describe the transition rates between open and closed
states of channels. They read as:

αn(V ) = 0.01 −V +10
exp (1−0.1V )−1 , βn(V ) = 0.125 exp(−V/80),

αm(V ) = 0.1 −V +25
exp (2.5−0.1V )−1 , βm(V ) = 4 exp(−V/18),

αh(V ) = 0.07 exp(−V/20), βh(V ) = 1
1+exp(−0.1V +3)) .

(1.3)
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The (shifted) Nernst equilibrium potentials are given by:

EK = −12 mV, ENa = 120 mV, EL = 10.6 mV

gK = 36 mS/cm2, gNa = 120 mS/cm2, gL = 0.3 mS/cm2.

These values are taken from [41], p 37-38, and correspond to those of the Hodgkin-
Huxley original paper [40], after a change of variables V = −V . Recall that the
Nernst equilibrium potentials are obtained by solving, for each ion i ∈ {K, Na, L}
the equation:

Ei = RT

zF
ln [i]out

[i]in
,

where [i]in and [i]out are concentrations of the ions inside and outside the cell.
R = 8.315 is the universal gas constant, T is temperature in Kelvin, F = 96, 48 is
the Faraday’s constant, z is the valence of the ion. For example, this computation
gives for sodium, with T = 293, [i]out = 440, [i]in = 40 (see [41] p 50):

ENa ≃ 55,

which with a shift of +65 gives the value of 120 used here. Originally, Hodgkin
and Huxley used the shift to obtain a potential at rest of approximately 0. Before
going into more theoretical aspects, we give some interpretation about the form of
conductances. The proportion of open potassium channels is n4. This comes from
the fact that 4 opening gates of potassium are required to open the potassium chan-
nel. Hence, the n gives the probability of the gate to be in active state and results
in the n4 term for potassium. For the sodium, it is supposed that there are there
are three gates which open the channels and one which close them. Hence, the
proportion of sodium opened channels is given by m3h, where it is supposed that
m stands for the probability of sodium opening gates to be active while h stands
for probability of sodium closing gates to be active. For more details on various
aspects of the HH model, we refer to [22, 25, 41] and the original paper [40].
The diffusion term-Equation of the cable
Up to now, we have only considered transversal current trough the membrane cell.
We want now to include longitudinal current flowing through the axon. This para-
graph is inspired from [1], see also [25]. First according to Ohm’s law, the follow-
ing equation holds:

V (x + dx, t) − V (x, t) = i(x, t)rdx

Dividing by dx and letting dx → 0 leads to

Vx(x, t) = i(x, t)r
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Figure 1.1: Electrical circuit used by Hodgkin and Huxley for modeling ionic
fluxes trough channels

Then, according to Kirchoff law, between position x and x + dx, we have:

i(x + dx, t) = i(x, t) + (ic +
∑
ion

iion(x, t))dx.

Again, dividing by dx and letting dx → 0 leads to

1
r

Vxx = cVt +
∑
ion

iion.

Combining with the HH ODE model, we obtain the HH diffusive model:
cVt = Vxx + I + gNam3h(ENa − V ) + gKn4(EK − V ) + gL(EL − V )
nt = αn(V )(1 − n) − βn(V )n
mt = αm(V )(1 − m) − βm(V )m
ht = αh(V )(1 − h) − βh(V )h,

(1.4)
Exercise 2.

1. We consider the diffusion less system. Show that, there exists Vm and VM

such that if n, m, h starts in (0, 1) and V starts in (Vm, VM ), then they remain
in this set for all positive time.

2. Show the same result for the diffusive system.

You can prove these results by a direct method or using the method of upper and
lower solutions. Consider an ODE:

x′ = f(x, t) (1.5)

Definition 1. A C1 function x+ is called an upper solution of (1.5) on [0, +∞) if
it satisfies:

(+)′ ≥ f(x, t)∀t ≥ 0 (1.6)
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Proposition 1. Assume that x+ is an upper solution of (1.5) and x is a solution of
(1.5). Then, if x+(0) ≥ x(0)

x+(t) ≥ x(t) ∀t ≥ 0.

Furthermore, if x+(0) > x(0) then

x+(t) > x(t) ∀t ≥ 0.

Analog definitions and results hold for lower solutions. See [61]. A similar
approach is useful for reaction-diffusion equations. Consider a reaction diffusion
equation:

u′ = f(u, t) + ∆u (1.7)

with Neumann Boundary Conditions.

Definition 2. A regular function u+(x, t) is called an upper solution of (1.7) on
[0, +∞ if it satisfyes:

u+′ − ∆u ≥ f(u, t)∀t ≥ 0 (1.8)

Proposition 2. Assume that u+ is an upper solution of (1.7) and u is a solution of
(1.7), with NBC. Then, if u+(0) ≥ u(0)

u+(t) ≥ u(t)∀t ≥ 0

For extended results around comparison of solutions in parabolic and elliptic
problems, we refer for exampls to [55, 59].

1.4 FitzHugh-Nagumo

In 1961, R. FitzHugh proposed a 2D model that reproduces excitability and ocilla-
tory features found in Hodgkin-Huxley model, see [31]. It is a modification of the
well-known Van der Pol model, and has been initially called, the Bonhoeffer-van
der Pol (BVP) model,

 xt = c(F (x) + y + z)
yt = 1

c
(x − a + by)

with,

wt = dw

dt
,
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and where F is a cubic function, a, b > 0, z corresponds to a stimulus intensity.
In the same paper [31], FitzHugh showed that the quantities u = V − 36m,

w = 0.5(n − h) obtained from the Hodkin-Huxley model evolve like the variables
x and y of the BVP model. In 1962, Nagumo et al. proposed an electronic circuit
whose behaviour is modeled by the BVP model, see [54]. The BVP model is now
called the FitzHugh-Nagumo model. Another way to reduce the Hodgkin-Huxley
to the FitzHugh-Nagumo model is to use properties of the Hodgkin-Huxley model
and set, h = 0.85 − n and m(V ) = αm(V )

αm(V )+βm(V ) , then approximate the nullclines
by a cubic and a straight line, see for example [41]. In this course, we will consider
the following model of FitzHugh-Nagumo type,

{
ϵut = f(u) − v
vt = u − δv − c

(1.9)

where
f(u) = −u3 + 3u and ϵ > 0, δ > 0 are small parameters.

and its reaction-diffusion version:

{
ϵut = f(u) − v + du∆u
vt = u − δv − c(x) + dv∆v

(1.10)

with u = u(x, t), v = v(x, t), on a smooth bounded domain Ω ⊂ Rn with du, dv >
0 and with Neumann zero flux conditions on the boundary Γ of Ω,

∂u

∂ν
= ∂v

∂ν
= 0.

1.5 The Keller-Segel Equation

1.5.1 The original papers

Relying on observations of Escherichia coli placed in an environment with oxy-
gen and an energy source, Keller and Segel [?] proposed a partial differential
equation to model the apparition of bands in bacterial concentration traveling at
constant speed in plates. The fundamental idea of the paper was to describe this
phenomenon as the result of chemotaxis: the bacteria would avoid low concentra-
tions and move preferentially toward higher concentrations of the substrate. Other
effects taken into consideration were random motion (diffusion) and consumption
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of the substrate. No growth factor was considered. The orginal Keller-Segel [45]
equation writes {

∂b
∂t = ∂

∂x

(
µ(s) ∂b

∂x

)
− ∂

∂x

(
bχ(s) ∂s

∂x

)
∂s
∂t = −k(s)b + D ∂s

∂x2
(1.11)

These notations are those of the original article. Here b stands for the bacterial
concentration and s for the substrate’s concentration. The first term on the right of
the first equation represents the motion of the bacteria in the absence of chemotaxis.
The second term on the right side of the first equation describes the chemotactic
response of the bacteria. It is assumed that the part of the bacterial flux which is
the result of chemotaxis is proportional to the chemical gradient. This assumption
is analog with assumptions used to derive the heat equation; (1.11) and related
equations have been widely investigated theoretically and numerically. We refer
for example to [?, 23, 52] for such developments.
Exercise 3. We consider (1.11) with ξ(s) = 1

s , k(s) = 1, µ(s) = 1, and D = 0,
on the domain Ω = R with the following assumptions

lim
x→+∞

b(x) = 0, lim
x→+∞

b′(x) = 0, lim
x→+∞

s(x) = s∞ > 0, lim
x→+∞

s′(x) = 0.

Look for solutions of the form

b(x, t) = u(x − ct), s(x, t) = v(x − ct).

1.5.2 Neurodegerative diseases and angiogenesis

Neurodegenerative diseases(ND) are a major wordly burden. The most studied is
Alzheimer’s disease (AD). The first report on AD goes back to 1906, when Alois
Alzheimer, a physician gave a lecture about the condition of a woman named Au-
gust Deter at a Psychiatrists’ research meeting in Tubingen, Germany. He related
her decline after fifty years starting with including memory loss, cognitive im-
pairment and hallucinations, followed by anxiety, desorientation, and sometimes
delirium. It also included memory loss, cognitive impairment and hallucinations.
She died within 5 years. After her death, Alzheimer examined her brain and identi-
fied a number of abnormalities, including thinning of the cerebral cortex, deposits
of a amyloid plaques and neurofibrillary tangles at neuron’s place. These last two
observations would become be considered hallmarks of Alzheimer’s disease. AD
starts to attract the attention of mathematicians. Models derived from KS and FKPP
can be used to investigate phenomena arising in ND.
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1.6 The Fokker-Planck Equation

Consider a stochastic differential equation of the form

dxt = µ(xt, t)dt + σ(xt, t)dWt (1.12)

where Wt stands for the Brownian motion. Then, the probability p(x, t) to be at
the position x at time t is given by the following parabolic equation, known as the
Fokker-Planck equation:

∂p

∂t
= − ∂

∂x
(µ(x, t)p(x, t)) + 1

2
∂2

∂x2
(
σ2(x, t)p(x, t)

)
(1.13)

Classical references are [58, 64]
Exercise 4.

1. Write the Fokker-Planck Equation associated to the SDE

dxt = −adt + σdWt (1.14)

2. Solve this equation.

3. Simulate the Fokker-Planck along with the statistical distribution from a
large number of solutions of eq. (1.14).

Derivation of the Fokker-Planck Equation
See [53].

1.7 Fundamental solutions of Laplace and Poisson Equa-
tions

The Laplace equation
∆u = 0

and the Poisson equation
∆u = f

play important role in physics. For example they provide stationary solutions of the
heat equation. In electrostatics, solving the Poisson equation amounts to finding
the electric potential for a given charge distribution. In the context of this course,
one can mention that recent developments of software tools for non-invasive brain
stimulation rely on electrical potential provided by Poisson equations. From a
mathematical point of view, the fundamental solutions are also crucial to develop
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the theory of PDEs in the Lp setting. The Lp setting is more technical than the
L2 setting. In this section we shall provide some results on solutions of Laplace
and Poisson equations. The solutions of Laplace equations are called harmonic
functions. We first recall important formulas. We start with the divergence formula∫

Ω
∇ · fdx =

∫
∂Ω

f · νds

where ∇ stands for the divergence operator, i.e. for a function f : Rn → Rn

∇ · f =
n∑

i=1

∂

∂xi
fi · νds,

and ν denotes the outward normal unit vector. From the divergence theorem ap-
plied to the gradient of a function u : Rn → R one deduce∫

Ω
∆udx =

∫
Ω

∇ · ∇udx =
∫

∂Ω
∇u · ν.

We follow here [Eva10] and [Jos13].
Exercise

Find radial solutions of the Laplace equation for n ≥ 2.
solution

We start with the case n = 2. We set

u(x) = φ(||x||),

with x = (x1, x2).

∂u

∂x1
= φ′(||x||) × 1

2(x2
1 + x2

2)− 1
2 × 2x1

= φ′(||x||)(x2
1 + x2

2)− 1
2 x1.

And,

∂2u

∂x2
1

= φ′(||x||)(x2
1 + x2

2)−1x2
1 − φ′(||x||)(x2

1 + x2
2)− 3

2 x2
1 + φ′(||x||)(x2

1 + x2
2)− 1

2 .

It follows that
∆u = φ′(||x||) + 1

||x||
φ′(||x||).

Denoting ||x|| = r, we look, for a function φ such that

φ′′(r) + 1
r

φ′(r) = 0.
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This equivalent to
φ′′(r)
φ′(r) = −1

r
.

This gives
ln(|φ′|) = − ln(r) + c,

φ′ = c

r
, c ∈ R,

and therefore
φ(r) = c ln(r) + c2.

For n ≥ 3 analog computations provide

φ(r) = cr2−n + c2.

In particular, we found that

ϕ(x) =
{

ln(||x||) if n = 2
||x||2−n if n > 2

is harmonic if x ̸= 0.
Exercise 5. Prove that for n ≥ 2, and for K compact∫

K
|ϕ(x)|dx < +∞

solution
It is sufficient to prove the result for K = B(0, 1). For n = 2 use polar coordinates,
x1 = r cos θ, x2 = r sin θ. We find that∫

B(0,1)
| ln(||x||)|dx1dx2

= −2π

∫ 1

0
r ln rdr

= π

2 .

For n ≥ 3, we write∫
B(0,R)

φ(||x||)dx =
∫ R

0

∫
∂B(0,r)

φ(r)drdσ

=
∫ R

0

∫
∂B(0,1)

rn−1φ(r)drdσ
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= nα(n)
∫ R

0
rn−1φ(r)dr

= nα(n)
∫ R

0
rn−1r2−ndr

= nα(n)R2

2

where α(n) denotes the volume of the unit sphere in Rn, α(n) = π
n
2

Γ( n
2 +1)

Exercise
Prove that if u, v ∈ C2(Ω̄),

∫
Ω

∆uvdx −
∫

Ω
u∆vdx =

∫
∂Ω

v∇u.n⃗dσ(x) −
∫

∂Ω
u∇v.n⃗dσ (1.15)

solution
Hint: Use Green formula

We set

ϕ(x) =
{ 1

2π ln(||x||) if n = 2
1

n(2−n)α(n) ||x||2−n if n > 2

where α(n) is the volume of the unit ball in Rn. If u ∈ C2(Ω̄), then under the
notations above, for x ∈ Ω

u(x) =
∫

∂Ω

(
u(y)∂ϕ

∂ν
(x−y)−ϕ(x−y)∂u

∂ν
(y)
)
dy+

∫
Ω

ϕ(x−y)∆u(y)dy (1.16)

Exercise
Prove Section 1.7.

solution
Let ϵ > 0 such that B(x, ϵ) ⊂ Ω. The idea is to apply Equation (1.15) with
u(y) = ϕ(x − y) and v(y) = u(y) on Ω \ B(x, ϵ), then take the limit at ϵ = 0.∫

Ω\B(x,ϵ)
Φ(x−y)∆u(y)dy−

∫
Ω\B(x,ϵ)

∆Φ(x−y)udy =
∫

∂Ω
Φ∇u.n⃗dσ−

∫
∂Ω

u∇Φ.n⃗dσ

−
∫

∂B(x,ϵ)
Φ∇u.n⃗dσ +

∫
∂B(x,ϵ)

u∇Φ.n⃗dσ

Then we remark that,

|
∫

∂B(x,ϵ)
Φ∇u.n⃗dσ| ≤

∫
∂B(x,ϵ)

|Φ|∇u|∞dσ
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≤
∫

∂B(x,ϵ)
|Φ|∇u|∞dσ

≤ φ(ϵ)|∇u|∞ϵn−1
∫

∂B(x,1)
dσ

≤ φ(ϵ)|∇u|∞ϵn−1
∫

∂B(x,1)
dσ

→ 0 as ϵ → 0.

Also, ∫
∂B(x,ϵ)

u∇Φ(x − y).n⃗dσ =
∫

∂B(x,ϵ)
φ′(ϵ)||n⃗||2u(y)dσ

= φ′(ϵ)|B(x, ϵ)| 1
|B(x, ϵ)|

∫
∂B(x,ϵ)

u(y)dσ

→ u(y) as ϵ → 0.

This proves the result.
In the following results about harmonic functions, we closely follow [33] para-

graphs 2.1 to 2.3. Two fundamental papers are [ADN59, ADN64]

1.7.1 Mean Value

Theorem 1. Let u ∈ C2(Ω) such that ∆u = 0, then for any ball B(y, R) strictly
included in Ω

u(y) = 1
nωnRn−1

∫
∂B

u(s)ds

u(y) = 1
ωnRn

∫
B

u(s)ds

where ωn denotes the volume of the unit ball in Rn. If ∆u ≥ 0 (≤) then the
equalities are replaced by ≤ (≥).

Theorem 2 (Strong Maximum Principle). Let u ∈ C2(Ω) such that ∆u ≥ 0, and
suppose there exists a point y ∈ Ω such that

u(y) = sup
Ω

u.

Then u is constant. Analog result holds with ∆u ≤ 0 and inf .

Theorem 3 (Weak Maximum Principle). Let u ∈ C2(Ω) ∩ C0(Ω̄) such that ∆u ≥
0 and assume that Ω is bounded. Then

sup
x∈Ω

u = sup
x∈∂Ω

u.
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Corollary 1. Let u ∈ C2(Ω) ∩ C0(Ω̄) such that ∆u = 0 and assume that Ω is
bounded. Then

inf
x∈∂Ω

u ≤ u ≤ sup
x∈∂Ω

u.

Theorem 4 (Harnack Inequality). Let Ω′ be a bounded domain strictly included in
Ω. Let u be a non-negative function such that ∆u = 0. Then

sup
x∈Ω′

u ≤ C inf
x∈Ω′

u.
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Chapter 2

Bifurcations in
Reaction-Diffusion systems

2.1 Turing

The idea behind the Turing mechanism can be formulated as follows: consider an
ODE system with a stable stationary point:

{
ut = f(u, v)
vt = g(u, v) (2.1)

Can this stationary point become unstable if we add diffusion, in a system like:

{
ut = f(u, v) + du∆u
vt = g(u, v) + dv∆v

(2.2)

In this paragraph, we shall look at this in some detail. We consider the following
system:

{
ut = u − v
vt = 3u − 2v

(2.3)

Exercise 6. Determine the nature of the stationary point (0, 0).
We consider the following system:

19
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Figure 2.1: Trajectory associated to system (2.3). (0, 0) is a stable focus.

{
ut = u − v + σuxx

vt = 3u − 2v + vxx
(2.4)

on the domain (0, 1) with zero flux Neuman boundary conditions ux(0) = ux(1) =
0, and σ > 0.
Exercise 7.

1. Show that, in L2(0, 1) endowed with the scalar product (f, g) =
∫ 1

0 f(x)g(x)dx,
the family 1, (

√
2(cos(kπx))k∈N∗ is orthonormal.

2. We set φ0(x) = 1, and ∀k ∈ N∗ φk(x) =
√

2 cos(kπx). Show that the
functions φk satisfy:

−(φk)xx = λkφk

and
(φk)x(0) = (φk)x(1) = 0,

where the values λk are to be specified.
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3. We set,

u(t) =
∞∑

k=0
uk(t)φk, v(t) =

∞∑
k=0

vk(t)φk. (2.5)

Show that for each k ∈ N∗, uk and vk are solutions of a two dimensional
linear system (write it). We denote this ODE system by (Ek).

4. Show that for fixed σ, (0, 0) is a sink for (Ek) if k is large enough.

5. Show that for each λk, there exists a value σk such that as σ crosses σk from
right to left, the 2d ODE associated system Ek features a bifurcation from a
sink to a saddle node.

6. Compute σ1.

Solution
Computations lead to

{
ukt = uk − vk − σλkuk

vkt = 3uk − 2vk − λkvk
(2.6)

and,

Tra(Ak) = −1 − (1 + σ)λk < 0, Det(Ak) = σλ2
k + 2σλk + 1 − λk

Define σk as:

σk = λk − 1
λ2

k + 2λk
> 0.

When σ crosses from right to left Det(Ak) changes its sign from positive to nega-
tive. The following proposition follows. Define σk as:

σk = λk − 1
λ2

k + 2λk
> 0.

The following proposition holds.

Proposition 3. For each k ∈ N∗, as σ crosses σk from right to left, the 2d ODE
associated system Ek features a bifurcation from a sink to a saddle node. There is
only a finite number of systems Ek for which (0, 0) is not a sink.

Exercise 8. Prove rigorously that if (uk, vk) are solution of system (2.6) then (2.5)
define solutions of (2.4).

The following lemma holds.
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Lemma 1. The sequence (σk)k∈N∗ is decreasing

Therefore, since ||u||L2 =
∑

k=0 u2
k, the following proposition holds:

Proposition 4. Suppose that σ < σ1. Suppose that the initial condition is not the
origin and that there exists one k ∈ N∗ for which (0, 0) is a saddle for Ek and
(uk(0), vk(0)) does not lie in the stable manifold associated with Ek, then

lim
t→+∞

||(u, v)(t)||L2 = +∞.

We have also:

Theorem 5. Assume σ > σ1, then for all IC

lim
t→+∞

||(u, v)(t)||L2 = 0

Proof. From the above computations, for each k ∈ N∗, the two eigenvalues of Ak

write:

µ1k = λk

2

(
− 1

λk
− (σ + 1) − (σ − 1)

√
1 + ϵ( 1

λk
)
)

and

µ2k = λk

2

(
− 1

λk
− (σ + 1) + (σ − 1)

√
1 + ϵ( 1

λk
)
)

where ϵ() denotes a generic continuous function such that ϵ(0) = 0. It follows that

µ1k = C1 + λk(−σ + ϵ( 1
λk

))

and
µ2k = C2 + λk(−1 + ϵ( 1

λk
))

where C1 and C2 are two constants. Note that for k large enough, the two eigen-
values are real, and uniformly smaller than a negative constant.
Let Pk the matrix of eigenvectors associated to µ1k and µ2k. Then(

uk(t)
vk(t)

)
= Pk

(
e−µ1kt 0

0 e−µ2kt

)
P −1

k

(
uk(0)
vk(0)

)

Finally, there exists two constants δ ans C, such that:

||(u, v)(t)||2L2 ≤ Ce−δt||(u, v)(0)||2L2
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Figure 2.2: For σ = 0.02, the stationary solution (0, 0) is unstable. Left: t = 10.
Right t = 17.

Figure 2.3: For σ = 0.1, the stationary solution (0, 0) is stable. Left: t = 0.1.
Right t = 10.
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Exercise 9. Simulate equation (2.4). Exhibit numerically, two values of σ, for
which (0, 0), appears to be respectively stable and unstable.

For the general system

{
ut = au + bv + σuuxx

vt = cu + dv + σvvxx
(2.7)

on a regular bounded domain Ω and with Neumann zero flux boundary conditions,
σu > 0, σv > 0, we have the following theorem. Ek is defined as in the exercise
above.

Theorem 6. We assume that a > 0, d < 0, a + d < 0 and ad − bc > 0. We
fix σv > 0, then for each k large enough, there exists a value σuk such that as
σu crosses σuk from right to left, the 2d ODE associated system Ek features a
bifurcation from a sink to a saddle node. Furthermore for each value of σ, there is
at most a finite number of systems Ek for which (0, 0) is not a sink.

Exercise 10. Prove theorem 6 (generalize the proof sketched in the previous exer-
cise).
Hint:It is well known that the eigenvalues of the operator −∆u with Neuman
Boundary conditions are an orthonormal basis of L2 with associated discrete eigen-
values (λk)k∈N which satisfy limk→+∞ λk = +∞. You can directly use that.
Exercise 11.
We consider the system

{
ut = −u3 + u − v + σuxx

vt = 3u − 2v + vxx
(2.8)

on a regular bounded domain Ω and with Neumann zero flux boundary conditions.

1. Compute the linearized system around (0, 0). What do you remark?

2. Simulate system (3.1).
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2.2 Hopf

Usually, in 2d nonlinear systems, Hopf bifurcation relates to the case in which an
eigenvalue of the Jacobian crosses the imaginary case, and this gives raise to the
coexistence of a stationary state of spiral type and a limit cycle. Since our goal
is to focus on PDEs, we start with linear systems which provide examples where
explicit computations can be provided. However, in 2d linear systems, limit cycles
correspond only to centers. We consider the following system:

{
ut = αu − v
vt = u

(2.9)

Exercise 12. Discuss the nature and stability of the stationary point of (2.9).

Following the scheme of the previous section, we move to a RD system. We
consider:

{
ut = αu − v + uxx

vt = u
(2.10)

on the domain (0, 1) with Neumann Boundary conditions.
Exercise 13.
Analyze the system (2.10).
Solution
As previously, we write

u(t) =
∞∑

k=0
uk(t)φk, v(t) =

∞∑
k=0

vk(t)φk.

and plug these expressions into Equation (2.10). We obtain,

(Ek)
{

ukt = αuk − vk − λkuk

vkt = uk
(2.11)

With the notations of the previous section, we have:

Proposition 5. For α < 0,

lim
t→+∞

||(u, v)(t)||L2 = 0
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Proposition 6. Let k ∈ N∗.
For α = λk, (0, 0) is a center for system (Ek), a source for (El) if l < k and a
sink for (El) if l > k. Furthermore, if: ul(0) = vl(0) = 0 for l ∈ {0, ..., k − 1}
then

lim
t→+∞

||(u, v)(t) − φk(uk(t), vk(t))|| = 0.

Otherwise,
lim

t→+∞
||(u, v)(t)|| = +∞.

For λk < α < λk+1, (0, 0) is a source for (El) si l ≤ k and a sink for (El) if
l > k. Furthermore, if ul(0) = vl(0) = 0 for l ∈ {1, ..., k} then

lim
t→+∞

||(u, v)(t)|| = 0.

Otherwise
lim

t→+∞
||(u, v)(t)|| = +∞.

This proposition is valid for any dimension replacing k2π2 and cos(kπx) by
the eigenvalues and eigenfunctions of the laplacian operator with Neuman Bound-
ary conditions.

Exercise 14.
Illustrate proposition 5 with numerical simulations. What do you remark?

Exercise 15.
Using the theoretical results of proposition 5, write a code allowing to illustrate
properly special solutions of (2.10) We now consider the system

{
ut = αu − u3 − v + uxx

vt = u
(2.12)

on the domain (0, 1) with Neumann Boundary conditions.

Exercise 16.
Analyze the system

{
ut = αu − v − u(u2 + v2)
vt = u + αv − v(u2 + v2) (2.13)
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and

{
ut = αu − v + u(u2 + v2)
vt = u + αv + v(u2 + v2) (2.14)

Exercise 17.
Here we consider the ODE version of (2.12). We assume |α| < 2.

1. Compute an eigenvector p associated to an eigenvalue λ of the jacobian A at
(0, 0).

2. Compute an eigenvector q of At associated to λ̄ such that < p, q >= 1 where
<, > denotes the scalar product in C2.

3. Prove that we can write (u, v) = zq + zq̄.

4. Show that < p, q̄ >= 0.

5. Show that < p, (u, v) >= z.

6. Provide the differential equation satisfied by z.

7. Show that after a change of variables this equation writes

w′ = λw − 3p̄1w2w̄ + O(|w|4).

Exercise 18.
Show that the ODE version of (2.12) admits a limit-cycle.
Exercise 19.
Simulate (2.12)
Exercise 20.
Apply the procedure of the previous exercise to the PDE. Prove the existence of
the center manifold.
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Chapter 3

Patterns

3.1 Numerical simulations

Exercise 21.
We consider the system

{
ut = −u3 + u − v + σuxx

vt = 3u − 2v + vxx
(3.1)

on the domain Ω = (0, a) × (0, a) and with Neumann zero flux boundary condi-
tions. Simulate system (3.1) and try to exhibit patterns.

Exercise 22.
Same question with the system

{
ut = −u3 + 3u − v + σuxx

vt = u
(3.2)

3.2 Analysis

Since the spectrum of the laplacian plays an important rôle, we are going to spend
some time to describe its properties in higher dimensions. This will be the occasion
to review some topological results.

29



30 CHAPTER 3. PATTERNS

Figure 3.1: Pattern obtained from simulation of equation (3.1) with σ = 0.1. Left:
isovalues of u(x, t) at the final time t = 100. Right: time evolution of u(x, t) for
t ∈ (0, 100) at four fixed space coordinates.

Figure 3.2: Patterns obtained from simulation of equation (3.2)
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3.2.1 Eigenvalues in the square

Exercise 23. Let Ω = (0, a)×(0, a). Exhibit an Hilbertian basis of eigenfunctions
of the operator −∆ with Neumann boundary conditions of the space L2((0, a) ×
(0, a)).

3.2.2 Generalization: spectral properties of the Laplacian operator

We focus on the spectral properties of the Laplacian operator with NBC. We follow
the exposition of [42], section 11.5. We assume that Ω ⊂ Rn is an open bounded
set with regular boundary and use the following notations

H = L2(Ω), V = H1(Ω).

We look for λ and u solutions of

−∆u = λu (3.3)

with ∇u.ν = 0 on the boundary of Ω, ν denoting the outward unitary vector at the
boundary.

First of all, let us remark that λ0 = 0 is an eigenvalue of the Laplacian operator
associated with the constant eigenfunction

φ0(x) = 1( ∫
Ω dx

) 1
2

.

Next, we look for another eigenvalue as follows. Let

λ1 = inf
u∈V,||u||=1,

∫
udx=0

||∇u||2

where

||u||2 =
∫

Ω
u2dx and ||∇u||2 =

n∑
i=1

∫
Ω

u2
xi

dx.

Let (un) such that, ||un|| = 1,
∫

undx = 0 and,

lim
n→+∞

||∇un||2 = λ1.

Since V is compactly embedded in H, there exists a subsequence of (un) which we
still denote by (un) which converges toward some φ1 in H, with ||φ1|| = 1. Next,
we remark that

||∇un + ∇um||2 + ||∇un − ∇um||2 = 2||∇un||2 + 2||∇um||2
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and therefore

||∇un − ∇um||2 ≤ 2||∇un||2 + 2||∇um||2 − ||∇un + ∇um||2.

But by definition

λ1 ≤ ||∇(un + um)||2

||un + um||2
,

which implies that

||∇un − ∇um||2 ≤ 2||∇un||2 + 2||∇um||2 − λ1||un + um||2

≤ 2||∇un||2 + 2||∇um||2 − λ1
(
||un||2 + ||um||2 + 2(un, um)

)
.

But since for n, m large enough (un, um) is arbitrary close to 1, the right-hand
side is arbitrary close to zero for n, m large enough. It follows that (un) is a
Cauchy sequence in V (endowed with its scalar product). Therefore (un) converges
toward φ1 in V and λ1 = |∇φ1||2. Now, we want to prove that λ1 and φ1 satisfy
Equation (3.3). Let H1 = {f ∈ V,

∫
f = 0}, and φ ∈ H1, then for t restricted to a

small neighborhood of 0

λ1 = inf
t

||∇(φ1 + tφ)||2

||φ1 + tφ||2
.

Therefore the t−derivative of

||∇(φ1 + tφ)||2

||φ1 + tφ||2

cancels at t = 0. Now, at t = 0

∂

∂t
||∇(φ1 + tφ)||2|t=0 = 2

∫
∇φ1.∇φ

and
∂

∂t
||φ1 + tφ||2|t=0 = 2

∫
φ1φ.

Therefore, we obtain

0 = 2||φ1||2
∫

∇u.∇φ − 2||∇φ1||2
∫

φ1φ.

Since ||φ1||2 = 1 and ||∇φ1||2 = λ1, this gives∫
∇φ1∇φ = λ1

∫
φ1φ.
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Note that this equality holds also for any φ ∈ V since it holds for any constant
function φ. Regularity results for elliptic equations show that if ∂Ω is C∞ then
φ1 ∈ C∞(Ω̄). By integration by parts, this gives

−
∫

∆φ1φ +
∫

∇φ1.ν =
∫

φ1φ

but since −∆φ1 = λ1φ1, we obtain∫
φ∇φ1.ν = 0

which implies
∇φ1.ν = 0 on Ω.

By induction, one can construct a sequence of eigenfunctions, and eigenvalues.
The following theorem states the result more precisely.

Theorem 7. Let Ω ⊂ Rn be an open,connected and bounded set of class C∞.
Then the equation

−∆u = λu, u ∈ V

admits an infinite countable number of eigenvalues λk and associated eigenfunc-
tions φk, as solutions. Furthermore

0 = λ0 ≤ λ1 ≤ ... ≤ λk ≤ ...

with
lim

k→+∞
λk = +∞,∫

Ω
φkφl = 0 if k ̸= l,

∫
Ω

φ2
k = 1,

∇φk.n = 0 on ∂Ω.

Proof. For k ∈ {0, 1}, λk and φk have been defined above. Assuming that they
have been defined until an arbitrary order k − 1, let

Hk = {f ∈ V,

∫
f = 0,

∫
fφ1 = 0, ...,

∫
fφk−1 = 0}

and
λk = inf

u∈Hk,||u||=1
||∇u||2,

then proceeding as above we can find φk ∈ Kk with ||φk|| = 1 and

−∆φk = λkφk
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with
∇φk.ν = 0.

We remark that since (Hk) is a decreasing sequence, the sequence (λk) is increas-
ing. Next, we prove that the sequence (λn) as defined above satisfies

lim
n→+∞

λn = +∞.

Assume that it is not the case. Then, there exists some constant C such that

||∇φk|| ≤ C.

Again, by the compact injection from H1 into L2, one can extract a subsequence
φk which converges in L2. Therefore this subsequence is Cauchy in L2. Note
however, that for any φk, φl

||φk − φl||2 = ||φk||2 + ||φl||2 − 2(φk, φl) = 2,

which contradicts the fact that (φk) is Cauchy.
Now, let v ∈ V . Let vi = φi. We shall prove that the series

∑∞
i=0 viφi

converges to v in H. Let vm =
∑m

i=0 viφi and let wm = v − vm. Note that for all
i ∈ {1, ..., m}, ∫

(v − vm)φi =
∫

vφi −
∫

vφi = 0,

which means that wm is orthogonal to span{φ0, ..., φm} and that vm is the orthog-
onal projection of v on span{φ0, ..., φm}. Therefore, by definition of λm+1,

λm+1 ≤ ||∇wm||2

||wm||2
,

which in turn implies

||wm||2 ≤ 1
λm+1

||∇wm||2.

But
||∇wm||2 = ||∇v||2 + ||∇vm||2 − 2

∫
∇v.∇vm

= ||∇v||2 − ||∇vm||2 − 2
∫

∇v.∇vm + 2||∇vm||2

= ||∇v||2 − ||∇vm||2 − 2
∫

∇(v − vm).∇vm

= ||∇v||2 − ||∇vm||2.
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It follows that
||wm||2 ≤ 1

λm+1
||∇v||2 −−−−−→

m→+∞
0.

Finally, this proves the theorem thanks to classical resuts on Hilbertian sums (see
for example [11] chapter 5) since V is dense in H.
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Chapter 4

Traveling Waves

4.1 Analysis of the FKPP equation

In this chapter, we will study in detail the Fisher-KPP equation. It is a good exam-
ple to introduce the field of traveling waves analysis.

The Fischer-KPP Equation writes:

ut = uxx + u(1 − u), t ∈ R+, x ∈ R (4.1)

We look for solutions of the form:

u(x, t) = w(x − ct).

Exercise 24. Show that w is a solution of a second order nonlinear ordinary
differential equation (write it!)
Solution
We find:

w” = −cw′ − w(1 − w).

Exercise 25. Write the above second order ODE as a two dimensionnal first order
ODE.
Solution
We find: {

w′ = p
p′ = −cp − w(1 − w) (4.2)

By the Cauchy-Lipschitz theorem, the above equation admits a unique solution.
Exercise 26.

37
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1. Find the stationary solutions of the above equation.

2. Proceed to a linear stability analysis of each of these solutions.

Solution

1. The two stationary solutions are (0, 0) and (1, 0).

2. The jacobian is given by:

J =
(

0 1
2w − 1 −c

)

Therefore at (0, 0) the jacobian is

J(0,0) =
(

0 1
−1 −c

)

and its eigenvalues are

−c −
√

c2 − 4
2 ,

−c +
√

c2 − 4
2 .

At (1, 0) the jacobian is

J(0,1) =
(

0 1
1 −c

)

and its eigenvalues are

−c −
√

c2 + 4
2 ,

−c +
√

c2 + 4
2 .

The following theorem holds.

Theorem 8. For c ∈ (−∞, 0), (0, 0) is a source. For c ∈ (0, +∞) it is a sink. For
c ∈ (−∞, −2), it is an unstable node, while for c ∈ (−2, 0) it is an unstable focus.
For c ∈ (0, 2) it is a stable focus. For c ∈ (2, +∞) it is an stable node.
For all c ∈ R, the stationary point (1, 0) is a saddle node.

The next step is to provide a relevant numerical analysis to gain insights on
the global behavior. We want to emphasize here the importance to reconnect to
the meaning of solutions of Equation (4.2) with respect to the original equation
Equation (4.1) Exercise 27. Provide a numerical analysis.
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Exercise 28. Draw the nullcines and, when relevant, the tangent attractive and
repulsive manifolds of the fixed points in the cases c = 1, c = 4.
Solution
From the above computations, it follows that an eigenvector associated with an
eigenvalue λ is given by (

1
λ

)
Therefore, for c = 1, at (1, 0), the eigenvalues are:

−1 −
√

5
2 ≃ −1.618, and

−1 +
√

5
2 ≃ 0.618.

It follows that at (1, 0) the attractive manifold is tangential to the vector(
1

−1−
√

5
2

)
≃
(

1
−1.618

)

while the repulsive manifold is tangential to the vector(
1

−1+
√

5
2

)
≃
(

1
0.618

)

(0, 0) is a stable focus.
For c = 4, at (0, 0), the eigenvalues are:

−2 −
√

3 ≃ −3.732, and − 2 +
√

3 ≃ −0.268.

It follows that at (0, 0) the trajectories are tangential for large t to the vector(
1

−2 +
√

3

)
≃
(

1
−0.268

)

For c = 4, at (1, 0), the eigenvalues are:

−2 −
√

5 ≃ −4.236, and − 2 +
√

5 ≃ 0.236.

It follows that at (1, 0) the repulsive manifold is tangential to the vector(
1

−2 +
√

5

)
≃
(

1
0.236

)

Exercise 29. Determine whether the Hopf-Bifurcation is supercritical or under-
critical
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Figure 4.1: In purple, solution of system for c = 1 and IC (0.9, −0.1). The sta-
tionary solution (0, 0) is a stable focus. In green, the p-nullcline: p = w(w − 1)s.

Figure 4.2: In red, solution of system for c = 4 and IC (0.9, −0.1). The stationary
solution (0, 0) is a stable node. In green, the p-nullcline: p = 0.25w(w − 1). In
blue the repulsive manifold of the linearized system at (1, 0)
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Exercise 30. Exhibit numerically an heteroclinic orbit for c = 1 and c = 4.
Exercise 31. Prove the above mentioned result for c = 4.

We state the result of this exercise as a theorem.

Theorem 9. For c > 2, there exists an heteroclinic orbit from (1, 0) to (0, 0).

Proof. Let f(w) = w(1 − w). First, we remark that

∂p

∂w
= −c − f(w)

p

Next, we claim that any solution of the equation

p′(w) = −c − 1
p(w)f(w) (4.3)

with p(0) < 0, |p(0)| small, satisfies p(w) < −w on [0, 1]. Indeed, p2(w) = −w
is an upper solution of (4.3). To see this, observe that

p2(w) = −w

satisfies
p2(0) = 0

and that

p′
2(w) = −1 > −1 − w = −2 + 1 − w = −2 + f(w)

w
= −2 − f(w)

−w
.

But since c > 2 and p2(w) = −w, we obtain that

p′
2(w) > −c − f(w)

p2
.

It follows that p2 is an upper solution. From this, reasoning with the nullclines, we
deduce that the trajectory ensued from (1, 0) at t = −∞ and evolving downward
will cross the nullcline p = −1

c f(w) and then remain stuck between the line w = 0
and the nullcline. Together with the fact that p′ > 0, w′ < 0 in this region this
implies that this trajectory converges toward (0, 0) at t = +∞. We give also a
direct proof of the fact that a solution p with p(0) < 0 satisfies p2(w) > p(w) on
[0, 1]. Assume the existence of w1 ∈ (0, 1] such that

p(w) < p2(w) on [0, w1)
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Figure 4.3: In purple, solution of system for c = 1 and IC (0.9, −0.1). The sta-
tionary solution (0, 0) is a stable focus. In green, the p-nullcline: p = w(w − 1)s.

Figure 4.4: Heteroclin orbit

p(w1) = p2(w1)

Let w0 in [0, w1). We have

p(w1) − p(w0) = −c(w1 − w0) −
∫ w1

w0
(f(w)

p(w) dw

p2(w1) − p2(w0) > −c(w1 − w0) −
∫ w1

w0
( f(w)
p2(w)dw

Substracting the first equation to the inequation, we obtain:

−p2(w0) + p(w0) >

∫ w1

w0
(− f(w)

p2(w) + f(w)
p(w) )dw > 0

which is a contradiction since p2(w) > p(w) on (w0, w1).



4.2. TRAVELING WAVES IN THE FHN EQUATIONS 43

4.2 Traveling waves in the FHN equations

For the reader interested in the traveling waves in the Neuroscience context, we
provide here some references for the study of this phenomenon in the FHN equa-
tion. Indeed, since the first studies on the Fisher-KPP equation [39, ?, 51], the
topic has aroused a huge interest, see for example [63]. The particular case of
the wave propagation phenomenon in the diffusive FHN, with Ω = R has also
been intensively studied for a few decades. For example, in [56, 57], J. Rinzel
and coauthors, following the ideas in McKean [50] studied a FHN RD system with
piecewise linear nonlinearity (instead of the cubic nonlinearity). They provided
explicit computations of periodic solutions, pulses, propagation speeds, and sta-
bility results. Around the same period, in a series of four articles, J.W. Evans
provided a more theoretical analysis of a general model of nerve conduction, see
[26, 27, 28, 29]. In [27], he defines the so-called Evans function, which would
become an essential tool for traveling wave stability analysis see [9]. A few years
later, see [43], C. Jones, relying on the papers of Evans, provided a detailed analy-
sis focusing on the stability of the traveling waves of the FHN diffusive equation.
Since then, many studies have been devoted to the characterization of different
properties of traveling waves. This includes the proof of the existence of pulses
of monotonic and periodic tales, the construction of solutions in a slow-fast con-
text thanks to singular perturbation theory or via asymptotic expansions, etc..., see
[14, 37, 13, 16, 15, 17, 44, 34, 35, 18, 47] and references therein cited.
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