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Main goal

Study propagating solution for the RD system of epidemic (or
predator-prey) type for (t, x) ∈ R2

∂tu = d1∂
2
xu+ Λ− µu

−βuv
∂tv = d2∂

2
xv − γv +βuv

Coupling due to transmission: Mass action incidence

Here we consider the non-autonomous version{
∂tu− d(t)∂2xu = Λ(t)− µ(t)u− β(t)uv,

∂tv − ∂2xv = β(t)uv − γ(t)v,
(t, x) ∈ R2.

Aim: Study travelling solution for general time heterogeneities

.
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Travelling waves (1)

For a RD equations or systems posed on homogeneous
medium (space and time translation invariant)

∂tU(t, x) = D∂xxU(t, x)+F (U(t, x)), t ≥ 0, x ∈ R, U(t, x) ∈ Rm,

a travelling wave is a special entire solution

U(t, x) = Ũ(x− ct), (t, x) ∈ R× R,

where Ũ is the wave profile and c ∈ R is the wave speed.
Ũ(ξ) connects two "states" at ξ = ±∞.
Here "states" can be stationary states, periodic or more
complicated solutions.
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Travelling waves (2)

The wave profile describes a moving transition (with constant
speed c) from one state to another.

A very huge literature on this rich topic, that arises in various
applicative fields in physics and biology:
The combustion theory, neuroscience, population dynamics,
and so on (see for instance the monograph of Volpert, Volpert
and Volpert).
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A KPP example

Fisher-KPP equation:

∂tu = ∂xxu+ u(1− u), t > 0, x ∈ R

TW connecting 0 and 1 for all speeds c ≥ 2.

A. Ducrot 7/39
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Heterogeneous medium: transition front

The translation invariance of the medium is no longer true and
the propagating profile and the speed have to take into account
the heterogeneities.
For a single equation with x ∈ R

∂tu = ∂xxu+ f(t, x, u(t, x)) with f(t, x, 0) = f(t, x, 1) = 0,

we define a transition front between u = 0 and u = 1 as an
entire solution u = u(t, x) and an interface X = X(t) such that

u(t, x+X(t))→

{
0 as x→∞
1 as x→ −∞

uniformly for t ∈ R,

(see Berestycki, Hamel,Nadin etc; Matano for spatially
heterogeneous medium)
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Time heterogeneous medium: GTW

Among the transition fronts, a special class is those of the
so-called Generalized travelling waves (GTW).
With the previous example

∂tu = ∂xxu+ f(t, u(t, x)) with f(t, 0) = f(t, 1) = 0,

A entire solution is said to be a GTW between 0 and 1 if
u(t, x) = U(t, ξ) with

ξ = x−
∫ t

0
c(s)ds with c = c(t) ∈ L∞(R) is the wave speed function,

and the profile U(t, ξ)→

{
0 as ξ →∞,
1 as ξ → −∞

, uniformly for t ∈ R.
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Some references

Huge literature for time and/or spatial periodic medium:
Also called pulsating wave introduced by in the book of
Shigesada and Kawasaki (Biological Invasions: Theory and
Practice.

Some literature for general time dependence:
Nadin and Rossi (JMPA, 2012) 7→ for KPP nonlinearity
Nadin and Rossi (Anal. PDE, 2015) 7→ for KPP with general in
time and periodic in space
Shen 7→ stability for KPP, Extensions to non-local – convolution
– diffusion,
and others
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Average medium

Let g ∈ L∞(R) be given. Define the least and upper mean
value respectively as follows

least mean M−(g) := lim
T→∞

inf
s∈R

1

T

∫ s+T

s
g(l)dl.

upper mean M+(g) := lim
T→∞

sup
s∈R

1

T

∫ s+T

s
g(l)dl.

Note that these limits always exist.
IfM−(g) =M+(g) the function g is said to have a mean value
(or uniquely ergodic), namely

lim
T→∞

1

T

∫ s+T

s
g(l)dl exists uniformly for s ∈ R.
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A KPP example

Consider GTW for the KPP equation for g = g(t) ≥ 0

∂tu = ∂xxu+ c(t)∂xu+ g(t)u(1− u), (t, x) ∈ R2,

u(t,∞) = 0 and u(t,−∞) = 1.

For this problem, when g is uniquely ergodic thenMc ≥ 2
√
Mg.

This can be formally observed by the ansatz

u(t, x) = ea(t)−λx for x� 1.

For general time dependence we get (See Nadin-Rossi)

M−(c) ≥ 2
√
M−(g)
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The problem

We study GTW for the following{
∂tu− d(t)∂2xu = Λ(t)− µ(t)u− β(t)uv,

∂tv − ∂2xv = β(t)uv − γ(t)v,
t ∈ R, x ∈ R.

that stands either for a predator-prey system u is the prey while
v is the predator
or an epidemic system with u the susceptible and v the
infectives.

Aim: GTW connecting the disease free equilibrium to a
uniformly positive (endemic) state.
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Diffusion reduction

The above system has a normalised time-dependent diffusion
for the susceptible.
This follows from a simple rescaling argument from the general
problem with two diffusion functions{

∂tu− du(t)∂2xu = Λ(t)− µ(t)u− β(t)uv,

∂tv − dv(t)∂2xv = β(t)uv − γ(t)v,
t ∈ R, x ∈ R.

New time variable

τ(t) =

∫ t

0
dv(s)ds ↪→ yields dv(t) ≡ 1.

A. Ducrot 15/39
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Travelling waves for homogeneous medium

Extension with age since infection in homogeneous medium.
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Assumptions and disease free equilibrium

Assumptions:
1 The functions Λ, µ, β and γ are bounded and uniformly

positive
2 d = d(t) is uniformly positive and uniformly continuous.

The system has a unique bounded disease free state, namely
entire solution for the system with v = 0.
It is spatially homogeneous and given by the expression

u∗(t) =

∫ t

−∞
e−

∫ t
s µ(l)dlΛ(s)ds, t ∈ R.

A. Ducrot 17/39
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Aim

We aim at studying the existence and non-existence of GTW,
that is:
(bounded) profile U(t, ξ) ≥ 0, V (t, ξ) ≥ 0 and a speed function
c = c(t) ∈ L∞(R) satisfying for (t, ξ) ∈ R2{

∂tU = d(t)∂2ξU + c(t)∂ξU + Λ(t)− µ(t)U − β(t)UV,

∂tV = ∂2ξV + c(t)∂ξV + β(t)UV − γ(t)V,

together with

lim
ξ→∞

|U(t, ξ)− u∗(t)|+ V (t, ξ) = 0 uniformly for t ∈ R,

lim inf
ξ→−∞

inf
t∈R

V (t, ξ) > 0, lim inf
ξ→−∞

inf
t∈R
|U(t, ξ)− u∗(t)| > 0.

Transition between the disease free and an endemic "state"
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Instability assumptions

We assume that the disease free equilibrium is "unstable", in
the sense that

T :=M− (β(·)u∗(·)− γ(·)) > 0.

This condition is equivalent to

∃a ∈W 1,∞(R), inf
t∈R

{
a′(t) + β(t)u∗(t)− γ(t)

}
> 0.

For constant coefficients, it becomes

β
Λ

µ
− γ > 0 ⇔ R0 :=

βΛ

µγ
> 1.

A. Ducrot 19/39
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The wave speed

Close to the unstable point (u∗(t), 0) at ξ =∞, V behaves like

∂tV = ∂2ξV + c(t)∂ξV + β(t)u∗(t)V − γ(t)V,

Plugging the ansatz V (t, ξ) = e−a(t)−λξ for some λ > 0 and
a ∈W 1,∞(R) yields

−a′(t) = λ2 − λc(t) + β(t)u∗(t)− γ(t),

Hence set δ(t) = β(t)u∗(t)− γ(t) and choose

c(t) = cλ,a(t) = λ+ λ−1δ(t) + a′(t).

A. Ducrot 20/39
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Existence result

Note thatM−(cλ,a) = λ+ λ−1T with T =M−(δ) > 0. Set
λ? :=

√
T then we have:

Theorem
For each λ ∈ (0, λ?) and a ∈W 1,∞(R) the system admits a
GTW for the wave speed function

cλ,a(t) = λ+ λ−1δ(t) + a′(t).

A. Ducrot 21/39
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Remarks

1 Note that for all λ ∈ (0, λ?) and a ∈W 1,∞(R) one has{
M−(cλ,a), λ ∈ (0, λ?) and a ∈W 1,∞(R)

}
= (2
√
T ,∞).

2 If δ(t) is T−periodic, for each λ ∈ (0, λ?) there exists
a ∈W 1,∞(R) st

cλ,a(t) = constant.

This recovers the known notion of pulsating wave in
periodic medium (with constant speed).
However we didn’t check that the wave profile is also
periodic in time.

3 More generally we didn’t study how the heterogeneous
time structure (periodic, almost-periodic, uniquely ergodic
and so on) is transmitted to the wave profiles.
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Minimal wave speed

The quantity 2
√
T turns out to be the minimal least value for the

wave speed.

Theorem
Let (U, V ) be a GTW with speed function c = c(t) ∈ L∞(R).
Then the following lower estimate holds

M−(c) ≥ 2
√
T .

A. Ducrot 23/39
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Sub and super-solution pair

No comparison principle for the system
We use a "skew" monotonicity (rather classical for
homogeneous system and less classical for heterogeneous)
Fix c(t) = cλ,a(t) for some λ ∈ (0, λ?) and a ∈W 1,∞(R).

1 U(t, ξ) ≤ U(t, ξ) := u∗(t)

2 V (t, ξ) ≤ V (t, ξ) := ea(t)−λξ

3 U(t, ξ) ≥ U(t, ξ) := u∗(t)−A(t)e−κξ for some κ > 0

4 V (t, ξ) ≥ V (t, ξ) := ea(t)−λξ[1−B(t)e−ηξ] for some η > 0
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Schematic view of the sub and super-solution pair

At a given time t ∈ R:
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A sequence of initial value problems

For all n ≥ 0 we consider the initial value problem{
∂tU

n = d(t)∂2ξU
n + c(t)∂ξU

n + Λ(t)− µ(t)Un − β(t)UnV n,

∂tV
n = ∂2ξV

n + c(t)∂ξV
n + β(t)UnV n − γ(t)V n,

for ξ ∈ R and t ≥ −n with

Un(−n, ξ) = max(0, U(−n, ξ)) and V n(−n, ξ) = max(0, V (−n, ξ)).

Then Un and V n stay between max(0, U(t, ξ)), U(t, ξ) and
max(0, V (t, ξ)) and V (t, ξ), respectively.

A. Ducrot 27/39



Generalized travelling waves Our problem and main results Existence Minimal wave speed

A sequence of initial value problems

For all n ≥ 0 we consider the initial value problem{
∂tU

n = d(t)∂2ξU
n + c(t)∂ξU

n + Λ(t)− µ(t)Un − β(t)UnV n,

∂tV
n = ∂2ξV

n + c(t)∂ξV
n + β(t)UnV n − γ(t)V n,

for ξ ∈ R and t ≥ −n with

Un(−n, ξ) = max(0, U(−n, ξ)) and V n(−n, ξ) = max(0, V (−n, ξ)).

Then Un and V n stay between max(0, U(t, ξ)), U(t, ξ) and
max(0, V (t, ξ)) and V (t, ξ), respectively.

A. Ducrot 27/39



Generalized travelling waves Our problem and main results Existence Minimal wave speed

Passing to the limit n→∞

To obtain a solution we pass to the limit n→∞.
Main difficulty: the upper estimate for V n reads as

V n(t, ξ) ≤ ea(t)−λξ, ∀t ≥ −n, ξ ∈ R.

It is unbounded for ξ → −∞.
We need to prove the boundedness of the solution V n(t, ξ) with
respect to n, t ≥ −n and ξ ∈ R.

A. Ducrot 28/39



Generalized travelling waves Our problem and main results Existence Minimal wave speed

Boundedness

Technical arguments based on a contradiction argument.

1 First Un is bounded by u∗.
2 Next roughly speaking, from the U−equation, if V n

becomes large then Un is close to 0

∂tU
n = d(t)∂2ξU

n + c(t)∂ξU
n + Λ(t)− µ(t)Un − β(t)UnV n,

since the decay rate becomes large.
3 Then from the V equation has to decay since

∂tV
n = ∂2ξV

n + c(t)∂ξV
n + (β(t)Un − γ(t))V n.
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Conclusion

At that stage we hand-up with the existence of a bounded
profile U(t, ξ) ≥ 0, V (t, ξ) ≥ 0 for the speed function
c(t) = cλ,a(t) ∈ L∞(R), satisfying for (t, ξ) ∈ R2


∂tU = d(t)∂2ξU + c(t)∂ξU + Λ(t)− µ(t)U − β(t)UV,

∂tV = ∂2ξV + c(t)∂ξV + β(t)UV − γ(t)V,

inft∈R V (t, ξ) > 0, ∀ξ ∈ R,

together with U(t,∞) = u∗(t) and V (t,∞) = 0 uniformly for
t ∈ R. This behaviour is obtained from the sub and super
solution close to ξ =∞.

A. Ducrot 30/39



Generalized travelling waves Our problem and main results Existence Minimal wave speed

Toward the end of the proof

It remains to prove persistence behaviour at ξ = −∞, that is

lim inf
ξ→−∞

inf
t∈R

V (t, ξ) > 0,

lim inf
ξ→−∞

inf
t∈R
|U(t, ξ)− u∗(t)| > 0.

This is proved at the same time as the minimal wave speed.
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Key result

Both the persistence of the GTW at ξ = −∞ and the minimal
wave speed property follow from the next result.

Theorem
Let (U, V ) be a bounded solution of the wave profile equation
with speed function c = c(t) ∈ L∞(R) st

∃ξ0 ∈ R, inf
t∈R

V (t, ξ0) > 0.

Then for all c̃ ∈ [0, 2
√
T ) the following holds true

lim inf
t→∞

inf
τ∈R

V

(
t+ τ, c̃t−

∫ t+τ

τ
c(l)dl

)
> 0
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First consequence: persistence of GTW at ξ = −∞

We choose τ = s− t and c̃ = 0 so that

lim inf
t→∞

inf
s∈R

V

(
s,−

∫ t

0
c(l + s− t)dl

)
> 0

while∫ t

0
c(l + s− t)dl ≥ inf

s∈R

∫ t

0
c(l + s)dl > 2

√
T t for t� 1.

so that
lim inf
ξ→−∞

inf
s∈R

V (s, ξ) > 0,

that proves the persistence of the GTW (constructed before) at
ξ = −∞.
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Second consequence: minimal wave speed

By contradiction, if (U, V ) is a GTW with speedM−(c) < 2
√
T

then fix
M−(c) < c̃ < 2

√
T .

Next there exists tn →∞ and (sn) ⊂ R st
γn := 1

tn

∫ tn
0 c(l − tn + sn)dl − c̃ < 0 so that γntn → −∞. Next

one has

lim inf
n→∞

V (sn,−γntn) > 0 from the theorem,

while V (sn,−γntn)→ 0 from the definition of a GTW (Recall
that −γntn →∞).
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Formal ideas for the proof of the key result (1)

Fix c̃ ∈ [0, 2
√
T ) then if there exists (τn) such that

V

(
t+ τn, c̃t−

∫ t

0
c(l + τn)dl

)
≈ 0 for t� 1,

then U
(
t+ τn, ξ + c̃t−

∫ t
0 c(l + τn)dl

)
≈ u∗(t+ τn) for t� 1

and ξ bounded.

Hence the function Wn(t, ξ) = V
(
t+ τn, ξ + c̃t−

∫ t
0 c(l + τn)dl

)
satisfies

∂tWn ≈ ∂2ξWn + c̃∂ξWn + δ(t+ τn)Wn

for t� 1 and ξ bounded.
Next construction of an unbounded sub-solution on a large
interval (−R,R).
Here we crucially use c̃ < 2

√
M−(δ), that is the "instability" of

V = 0 in the moving frame c̃.
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Formal ideas for the proof of the key result (2)

The above argument roughly shows that: for all c̃ ∈ [0, 2
√
T ) the

following holds true

lim sup
t→∞

inf
τ∈R

V

(
t+ τ, c̃t−

∫ t+τ

τ
c(l)dl

)
> 0.

Then we change from lim sup to lim inf by using dynamical
system arguments.
Here we adapt ideas from uniform persistence theory and more
precisely some ideas to pass from the so-called weak uniform
persistence to the strong version (see Hale and Waltman,
Thieme, etc).
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Some conclusions

1 Dynamical system arguments allow us to overcome the
lack of comparison principle, using the instability of
semi-trivial states.

2 Powerful tools that has also been used and adapted to
study the spreading speed for the solutions of systems
without comparison principle, such as predator-prey
systems (D. JDE 2016; D., Giletti, Matano 2019 CVPDE
2019).

3 Possible extensions for more complicated, non-monotone
and monostable diffusive systems in epidemiology and
ecology, for instance. (age since infection, chronological
age or size structure, logistic growth, non-local diffusion
and so on).
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Thank you for your attention.
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