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Brain : organ with high energy needs ; 2% of body weight, 20% of energy
needs

Energy is necessary to support neural activity ; comes from many sources :
glutamate, glucose, oxygen, ..., lactate

Glioma : tumor which starts in the glial cells ; around 30% of brain cancers
and 80% of malignant brain tumors

Leads to alterations of cell’s energy management

Lactate creation, consumption, import and export play a key role in the cancer
development



Lactate (=ionized form of lactic acid) : considered for a long time as a waste
product resulting from anaerobic exercise

Actually : gluconeogenic precursor ; 30% of cell glucose used during exercise
is derived from lactate

Lactate formation occurs in aerobic conditions ; lactate production is the result
of glucose used by muscle cells under aerobic conditions

Lactate is crucial for the brain : main fuel used by neurons ; essential for
long-term memory and may be involved in Alzheimer’s disease



1990’s : it was postulated that a well orchestrated collaboration between
atrocytes and neurons is the basis of brain energy metabolism

→Astrocytes produce lactate, which flows to neurons

Entry and exit of lactate : concentration dependent ; mediated by MCT’s

Gliomas : MCT’s are more active ; essential for the tumor survival

Tumor cells favor lactate creation and consumption



Neuroimaging techniques : allow an indirect and noninvasive measure of
cerebral activities ; allow measurement of various metabolic concentrations
(lactate)

MRI : reference imaging technique for soft tissues (brain) ; allows to obtain
quality data without opening the skull

Allows to follow cerebral activity in certain zones of the brain (functional
MRI)

Allows to see tissue composition (diffusional MRI)



Energy management in healthy and tumoral cells and gliomas can be difficult
to observe and explain experimentally

→Mathematical modeling can be helpful to describe and understand cells
energy changes

We consider a simplified model for lactate exchanges between a cell and
blood (A. Aubert, R. Costalat, P.J. Magistretti, L. Pellerin)

Aim : follow in a simple way lactate kinetics between a cell and the capillary
network in its neighborhood

Built in vivo : we need to consider loss and input terms for both intracellular
and capillary lactate concentrations



We set :

uε : intracellular lactate concentration (in nM)
vε : capillary lactate concentration (in nM)
ε : volume separating the compartments (main parameter in the model)

To manage blood flow, vessels dilate and modify their volume

→It is important to know how variations of their volume, correlated with
variations of ε, impact the whole dynamics



Main features of the model :

• There is a lactate cotransport through the brain blood

Taken into account by a simplified version of an equation for carrier-mediated
symport (the nonlinear term in the equation depends on the maximum
transport rate between the blood and the cell (T > 0) and the
Michaelis-Menton positive constants k (intracellular) and k′ (extracellular))

• A cell can equally produce and consume lactate, but also export surplus
lactate to neighboring cells

J : balance sheet of the whole phenomenon ; nonnegative, depends on t and uε
(seen as a regulatory term), bounded by a constant BJ , Lipschitz continuous



A cell manages its lactate concentration by means of its amount, not of the
experiment’s duration

→ J does not depend on t

A cell imports more lactate when its lactate concentration is low

→ J is monotone decreasing

Example : J(x) = GJ − LJ + cJ
x+εJ

(creation-consumption+import)



• There is a blood flow contribution to capillary lactate concentration
depending on both arterial and venous lactates

L > 0 : arterial lactate concentration
F : blood flow; positive, bounded (0 < F1 ≤ F ≤ F2), continuous, seen as a
forcing term

Example : periodic function (not continuous)

F(t) = F0(1 + αf ) if ∃N ∈ N/(N − 1)tf + ti < t < Ntf

F(t) = F0 otherwise
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Simplified model :

lactate variation
cell︷︸︸︷

u′
ε(t) =

cell consumption,
exchanges with neighborhood︷ ︸︸ ︷

J(t, uε(t)) −

Exchange cell/blood by symport︷ ︸︸ ︷
T(

uε(t)
k + uε(t)

− vε(t)
k′ + vε(t)

)

ε︸︷︷︸
volume

difference

× v′ε(t)︸︷︷︸
lactate variation

capillary

= F(t)(L− vε(t))︸ ︷︷ ︸
blood flux

+ T(
uε(t)

k + uε(t)
− vε(t)

k′ + vε(t)
)︸ ︷︷ ︸

exchange cell/blood by symport

t = 0 : uε(0) = ū ≥ 0 and vε(0) = v̄ ≥ 0



Remark : more complete model

du
dt

+ T1(
u

k + u
− p

kn + p
) + T2(

u
k + u

− q
ka + q

) + T(
u

k + u
− v

k′ + v
) = J0

dp
dt

+ T1(
p

kn + p
− u

k + u
) = J1

dq
dt

+ T2(
q

ka + q
− u

k + u
) + Ta(

q
ka + q

− v
k′ + v

) = J2

ε
dv
dt

+ Fv + T(
v

k′ + v
− u

k + u
) + Ta(

v
k′ + v

− q
ka + q

) = FL

Intracellular compartment split into 2 parts : neurons (p) and astrocytes (q)

Includes transport from capillary to intracellular astrocytes



The case ε > 0

Well-posedness

We write the system in the form

x′ = f (t, x), x = (uε, vε), f = (f1, f2)

The system is quasipositive : x ≥ 0, xi = 0 =⇒ fi(t, x) ≥ 0

→Solutions with nonnegative initial data remain nonnegative

f is globally Lipschitz continuous

→Existence and uniqueness of the global in time solution



Bounds on the solutions

Viability domain

Upper bound on the capillary lactate concentration :

v′ε(t) 6 −F1vε(t)
ε

+
F2

ε
+

T
ε

Gronwall’s lemma implies

vε(t) 6 exp(
−F1t
ε

)v̄ +
T + F2L

F1
(1− exp(

−F1t
ε

))

and

vε(t) 6 max(v̄,
T + F2L

F1
) := Bv



We do not have an upper bound on the intracellular lactate uε in general

We can find a sufficient condition ensuring and upper bound

We assume that
J(t, x) 6 BJ

We have

u′ε(t) 6 BJ + T
Bv

Bv + k′
− T

uε(t)
k + uε(t)

Assume that

BJ < T(1− Bv

k′ + Bv
)⇔ BJ(k′ + Bv) < Tk′



Related to the equation f (x) = 0 for f (x) = BJ − Tx
k+x + TBv

k′+Bv
and for which a

positive solution exists if and only if BJ < T(1− Bv
k′+Bv

)

Biological interpretation : at each time, the lactate uptake by a cell cannot be
larger than the lactate it can purge through the blood (otherwise, the cell
lactate increase may not be limited)

Set z = Bv
k′+Bv

+ BJ
T : we have 1− z > 0

If uε(t) > kz
1−z :

BJ + T
Bv

Bv + k′
− T

uε(t)
k + uε(t)

< 0

and

u′ε(t) < 0

→ uε(t) 6 max( kz
1−z , ū) := Bu



Remark : The sufficient condition can be slightly relaxed. Take

J(x) = GJ − LJ +
cJ

x + εJ

Does not satisfy the sufficient condition

If GJ > LJ (creation is larger than consumption) and GJ < LJ + Tk′
k′+Bv

(lactate
creation of the cell is smaller than its consumption and purge through the
blood ; able to manage lactate excess), the sufficient condition is only satisfied
for

x >
Cj

Tk′
k′+Bv

− GJ + LJ
= N

Sufficient to conclude that

uε(t) 6 max(N,
kz

1− z
, ū)



Lower bounds : we already know that uε and vε are nonnegative

Note that

v′ε(t) > −F2vε(t)
ε

+
F1

ε
− T
ε

Bv

k′ + Bv

If
F1L−T Bv

k′+Bv
F2

> 0 and vε(t) 6
F1L−T Bv

k′+Bv
F2

, then v′ε(t) > 0 :

vε(t) > min(v̄,
F1L− T Bv

k′+Bv

F2
)

If
F1L−T Bv

k′+Bv
F2

< 0 : no positive lower bound

vε(t) > min(v̄,max(
F1L− T Bv

k′+Bv

F2
, 0)) := Mv



We have

u′ε(t) > T(
Mv

k′ + Mv
− uε

k + uε
)

If uε(t) 6 Mv
k
k′ , then u′ε(t) > 0 :

uε(t) > min(ū,Mv
k
k′

) := Mu

Stability of the equilibrium

We take F and J constant

Solve

0 = J − T(
u

k + uε
− v

k′ + v
)

0 = F(L− v) + T(
u

k + u
− v

k′ + v
)



Unique equilibrium :

ul =
k( J

T + vl
k′+vl

)

1− ( J
T + vl

k′+vl
)

vl = L +
J
F

Exists provided that

J
T

+
LF + J

F(k′ + L) + J
< 1⇔ J2 + JF(L + k′)− TFk′ < 0

Remarks :
(i) We know that vε(t) 6 L + T

F = Bv. Then vl 6 Bv (as J 6 T)



(ii) We fix all parameters, except for J. Solving J2 + JF(L + k′)− TFk′ = 0,
there is an equilibrium only when J ∈]Jb, Jh[

Jb :=
1
2

(−F(L + k′)−
√

∆J)(< 0)

Jh :=
1
2

(−F(L + k′) +
√

∆J)(> 0)

∆J = F2(L + k′)2 + 4TFk′ > 0

If 0 < J < Jh : one equilibrium, asymptotically stable (node)

If J > Jh : no equilibrium

(iii) Therapeutic hint : have the equilibrium outside the vialability domain,
where cell necrosis occurs

→Explore playing on cell lactate intake : large J involves unbounded cell
lactate concentration leading to exit of cell viability domain and glioma cell
death



The case ε = 0

Relevant to study the limit ε→ 0

We take F and J constant

Limit system :

u′0(t) = J − T(
u0(t)

k + u0(t)
− v0(t)

k′ + v0(t)
)

0 = F(L− v0(t)) + T(
u0(t)

k + u0(t)
− v0(t)

k′ + v0(t)
)

u0(0) = ū0 ∈ R+



Set

ϕc : ]− c,+∞[→ ]−∞,T[, s 7→ Ts
c + s

ψc : ]− c,+∞[→ R, s 7→ Fs + ϕc(s)

ψc is a bijection from ]− c,+∞[ onto R and from R+ onto itself

Equivalent system :

v0(t) = ψ−1
k′ (FL + ϕk(u0(t))) := Ψ(u0(t))

u′0(t) = J − T(
u0(t)

k + u0(t)
− Ψ(u0(t))

k′ + Ψ(u0(t))
) := G(u0(t))



Well-posedness, nonnegativity

Upper bound on v0 :

v0(t) 6 L +
T
F

:= Bv,0

Conditional upper bound on u0 : Bu,0

Unique equilibrium, locally stable (when it exists)



Set u = uε − u0 and v = vε − v0, uε(0) = u0(0) = ū0

Then

u′(t) = T(
k′v(t)

(vε(t) + k′)(v0(t) + k′)
− ku(t)

(uε(t) + k)(u0(t) + k)
)

εv′(t) = −Fv(t)+T(
ku(t)

(uε(t) + k)(u0(t) + k)
− k′v(t)

(vε(t) + k′)(v0(t) + k′)
)−εv′0(t)

u(0) = 0

We have

v0(t) 6 Bv,0

|v′0(t)| 6 kT(J + T)

(F + k′T
(k′+Bv,0)2 )

:= γ



Multiply the first equation by u and the second by v and sum

d
dt

(u2(t) + εv2(t)) 6 (
8T2

Fk2 +
4T2

Fk′2
)(u2(t) + εv2(t)) +

8γ2

F
ε2

This gives

u2(t) + εv2(t) 6 exp
(T2t

F
(

8
k2 +

4
k′2

)
)
(ε(v̄0 −Ψ(ū0))2

+
k2(J + T)2

(F + k′T
(k′+L+ T

F )2 )2

2ε2

( 2
k2 + 1

k′2 )
)

− k2(J + T)2

(F + k′T
(k′+L+ T

F )2 )2

2ε2

( 2
k2 + 1

k′2 )



If v̄0 = Ψ(ū0) :

u2(t) + εv2(t) 6 (exp
(T2t

F
(

8
k2 +

4
k′2

)
)
− 1)

2γ2ε2

T2( 2
k2 + 1

k′2 )

On the finite time interval [0, tm] :

|u(t)| 6 Ctmε, |v(t)| 6 Ctm
√
ε



ε > 0 : simulations of uε and vε

Lactate dynamics for varying F and J. Left : concentration of intracellular
lactate. Right : capillary lactate.

Red : computed upper bound
Black : lactate trajectory
Blue : computed lower bound



ε > 0 : uε and vε

Dynamics for constant F and J. Left : intracellular. Right : capillary.

Red : Upper bound
Magenta : computed equilibrium
Black : trajectory
Blue : lower bound



ε = 0 : u0 and v0

Left : intracellular. Right : capillary.

Red : upper bound
Magenta : equilibrium
Black : trajectoiry



Comparaison of dynamics

Up : ε > 0. Bottom : ε = 0



Comparaison of dynamics for different ε’s



Comparaison of dynamics for different J’s

An equilibrium exists for J < 0.00851 mM.s−1



Comparison with real medical data



Further improvements :

• Different compartments

• Other enegetic mechanisms : oxygen, glutamate, ...

• Growth of the tumor



A simple PDE’s model

Lactate concentrations vary according to position ; spatial diffusion

PDE’s system (F and J constant) :

∂u
∂t
− α∆u + T(

u
k + u

− v
k′ + v

) = J, α > 0

ε
∂v
∂t
− β∆v + Fv + T(

v
k′ + v

− u
k + u

) = FL, ε, β > 0

∂u
∂ν

=
∂v
∂ν

= 0 on Γ

u|t=0 = ū, v|t=0 = v̄

u = uε, v = vε, Ω : bounded domain of Rn, n = 2 or 3, Γ = ∂Ω



Assume that

(ū, v̄) ∈ (H3(Ω) ∩ H2
N(Ω))2, ū ≥ 0, v̄ ≥ 0 a.e. x

H2
N(Ω) = {w ∈ H2(Ω),

∂w
∂ν

= 0 on Γ}

We recover several qualitative properties of the ODE’s model :

•Well-posedness, nonnegativity

• L∞(Ω)-bounds on the solutions

• Conditional existence of a unique spatially homogeneous equilibrium, linear
stability

•Well-posedness, nonnegativity, linear stability of the spatially homogeneous
equilibrium for the limit system

• Estimates on the difference of solutions to original and limit systems on
finite time intervals



Nonnegativity of the solutions

System of reaction-diffusion equations

Invariant region : {u ≥ 0, v ≥ 0}

→ Nonnegativity

Uniqueness

Uniqueness of nonnegative solutions



Existence

Galerkin scheme to the modified system

∂u
∂t
− α∆u + T(

u
k + |u|

− v
k′ + |v|

) = J

ε
∂v
∂t
− β∆v + Fv + T(

v
k′ + |v|

− u
k + |u|

) = FL

∂u
∂ν

=
∂v
∂ν

= 0 on Γ

u|t=0 = ū, v|t=0 = v̄

Existence, uniqueness of the solution

Multiply the first equation by −u− and the second one by −v−

(x− = min(0,−x)) : u and v are nonnegative

→ Solutions to the initial system



Regularity

We have, ∀tm > 0

(u, v) ∈ L∞(0, tm; (H3(Ω) ∩ H2
N(Ω))2) ∩ L2(0, tm; H4(Ω)2)

(
∂u
∂t
,
∂v
∂t

) ∈ L∞(0, tm; H1(Ω)2) ∩ L2(0, tm; H2(Ω)2)

L∞(Ω)-bounds on the solutions

We have

‖u(t)‖L∞(Ω) ≤ ‖ū‖L∞(Ω) + (J + T)t, t ≥ 0

‖v(t)‖L∞(Ω) ≤ e−
F
ε

t‖v̄‖L∞(Ω) +
FL + T

F
, t ≥ 0



Idea of the proof :

We have

∂u
∂t
− α∆u ≤ J + T

ε
∂v
∂t
− β∆v + Fv ≤ FL + T

Multiply the first equation by um+1 and the second by vm+1, m ∈ N :

‖u(t)‖Lm+2(Ω) ≤ ‖ū‖Lm+2(Ω) + (J + T)Vol(Ω)
1

m+2 t, t ≥ 0

‖v(t)‖Lm+2(Ω) ≤ e−
F
ε

t‖v̄‖Lm+2(Ω) +
FL + T

F
Vol(Ω)

1
m+2 , t ≥ 0

Let m→ +∞



Remarks :
(i) We do not have a uniform estimate on u

(ii) The estimate on v yields : if ‖v̄‖L∞(Ω) ≤ R and δ > 0 is given, then there
exists t0 = t0(R, δ) > 0 such that

‖v(t)‖L∞(Ω) ≤
FL + T

F
+ δ, t ≥ t0

→ Dissipative estimate

Comparable with the bound obtained for the ODE’s system (t0 = 0, δ = 0)

If M is such that F(L−M) + T ≤ 0, i.e., M ≥ FL+T
F , and v̄ is such that

0 ≤ v̄ ≤ M a.e. x, 0 ≤ v ≤ M a.e. (x, t)



(iii) Uniform bound on u : in the L2(Ω)-norm only

Assume J + Tv
k′+v < T (v is bounded ; 0 ≤ v̄ :≤ FL+κ

F ) and set
E = 1

2‖u‖
2 + k‖u‖L1(Ω) :

dE
dt

+ α‖∇u‖2 + c‖u‖L1(Ω) ≤ c′, c > 0

dE
dt

+ c
√

E ≤ c′, c > 0

Set E∗ = ( c′
c )2, so that

dE∗

dt
+ c
√

E∗ = c′

Comparison arguments yield

E(t) ≤ max(E(0),E∗), t ≥ 0



Assume J ≥ T , FL ≥ T , ū > 0, v̄ > 0 a.e. x. Then :

u(x, t) ≥ 1
‖1

ū‖L∞(Ω)

, v(x, t) ≥ e−
F
ε

t

‖1
v̄‖L∞(Ω)

a.e. (x, t)

Idea of the proof :

Note that

∂u
∂t
− α∆u ≥ J − T

ε
∂v
∂t
− β∆v + Fv ≥ FL− T

Multiply by 1
u and 1

v : positivity



Multiply by − 1
um+1 and − 1

vm+1 , m ∈ N :

‖ 1
u(t)
‖Lm(Ω) ≤ ‖

1
ū
‖Lm(Ω), t ≥ 0

‖ 1
v(t)
‖Lm(Ω) ≤ ‖

1
v̄
‖Lm(Ω)e

F
ε

t, t ≥ 0

Let m→ +∞

stability of the unique spatially homogeneous equilibrium

Same as for the ODE’s system; exists under the same condition



Linearized system around the equilibrium

∂U
∂t
− α∆U + T(

k
(k + ul)2 U − k′

(k′ + vl)2 V) = 0

ε
∂V
∂t
− β∆V + FV + T(

k′

(k′ + vl)2 V − k
(k + ul)2 U) = 0

∂U
∂ν

=
∂V
∂ν

= 0 on Γ

U|t=0 = U0, V|t=0 = V0

Well-posedness, regularity, nonnegativity (U0, V0 nonnegative)



Theorem : The stationary solution (u, v) is linearly exponentially stable, in
the sense that all eigenvalues s ∈ C associated with the linear system satisfy
Re(s) ≤ −ξ, for a given ξ > 0.



The case ε = 0

Limit problem :

∂u
∂t
− α∆u + T(

u
k + u

− v
k′ + v

) = J

−β∆v + Fv + T(
v

k′ + v
− u

k + u
) = FL

∂u
∂ν

=
∂v
∂ν

= 0 on Γ

u|t=0 = ū

u = u0, v = v0

Parabolic-elliptic system

Remark : −β∆v(0) + Fv(0) + T( v(0)
k′+v(0) −

ū
k+ū) = FL



Assume that

u0 ∈ H2
N(Ω), u0 ≥ 0 a.e. x

Well-posedness for an auxiliary system

Modified problem :

∂u
∂t
− α∆u + T(

u
k + |u|

− v
k′ + |v|

) = J

−β∆v + Fv + T(
v

k′ + |v|
− u

k + |u|
) = FL

∂u
∂ν

=
∂v
∂ν

= 0 on Γ

u|t=0 = ū



Variational formulation :
Find (u, v) : [0, tm]→ H1(Ω)2 such that

d
dt

((u, φ)) + α((∇u,∇φ)) + ((ϕk(u), φ))− ((ϕk′(v), φ))

= ((J, φ)), ∀φ ∈ H1(Ω)

β((∇v,∇ψ)) + F((v, ψ)) + ((ϕk′(v), ψ))− ((ϕk(u), ψ))

= ((FL, ψ)), ∀ψ ∈ H1(Ω)

u(0) = ū = in L2(Ω)

ϕc(s) =
Ts

c + |s|
Well-posedness : Galerkin scheme



Well-posedness and regularity for the original problem

Nonnegativity, well posedness

We have, ∀tm > 0

u ∈ L∞(0, tm; H2
N(Ω)) ∩ L2(0,T; H3(Ω))

v ∈ L∞(0, tm; H3(Ω) ∩ H2
N(Ω)) ∩ C([0, tm]; L2(Ω))

∂u
∂t
∈ L∞(0, tm; L2(Ω)) ∩ L2(0, tm; H1(Ω))

Bounds on the solutions

We have

‖u(t)‖L∞(Ω) ≤ ‖ū‖L∞(Ω) + (J + T)t, t ≥ 0

‖v(t)‖L∞(Ω) ≤
FL + T

F
, t ≥ 0



Regularity of ∂v
∂t

Essential to study the limit ε→ 0

We can define the mapping

F : H1(Ω)→ H1(Ω), w 7→ z = F(w)

where z is the unique solution to

α((∇z,∇φ)) + F((z, φ)) + ((ϕk′(z), φ)) = ((FL + ϕk(w), φ)), ∀φ ∈ H1(Ω)

→ v(t) = F(u(t))

F is differentiable (for the L2(Ω) and H1(Ω)-norms)



→ ∂v
∂t = F ′(u) · ∂u

∂t

→ ∂v
∂t ∈ L∞(0, tm; H1(Ω)), ‖∂v

∂t ‖H1(Ω) ≤ c‖∂u
∂t ‖ a.e. t ≥ 0

Stability of the unique spatially homegeneous equilibrium

As in the case ε > 0

Convergence to the limit problem as ε→ 0

Convergence on finite time intervals :

‖uε(t)− u0(t)‖H1(Ω) ≤ Q(tm, ‖ū‖H1(Ω))ε

‖vε(t)− v0(t)‖H1(Ω) ≤ Q(tm, ‖ū‖H1(Ω))
√
ε,

t ∈ [0, tm], uε(0) = u0(0) = ū, vε(0) = v0(0) = F(ū)
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