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Introduction
Motivation and Overview

I Neurons form complex networks via synapses through
which information propagates.

I Here, we consider chemical synapses: one neuron
influences another through the release of
neurotransmitters, which are small molecules packed
inside synaptic vesicles (SV).
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Introduction
Motivation and Overview

I At the presynaptic terminal: Action potential triggers
synaptic vesicle release (SVR).

I In the synaptic cleft: Neurotransmitters bind to
receptors, which can open synaptic channels.

I In the postsynaptic neuron: Ionic currents flowing
through the open synaptic channels displace the
membrane potential.
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Figure: Electron microscope cross-sectional images of two synapses
of cortical neurons in the mouse brain. Some docked vesicles are
indicated by arrows. (Images adapted from Wu et al. [28], under the

Creative Commons Attribution 4.0 International Public License.)
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Introduction
Motivation and Overview

I Unlike the all-or-none action potential, synaptic
transmission is graded.

I The synapse is therefore a favorite site of hormonal,
pharmacologic, and neural regulation of nervous activity.

I SVR is stochastic and its likelihood of occurrence is a
crucial factor in the regulation of signal propagation in
neuronal networks [7, 10, 14, 32].

I SVR is the most significant source of noise in the
central nervous system [3, 9].



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Introduction

A simple model of
synaptic vesicle
release (SVR)

A more general
model of SVR

Simulation of
synaptic vesicle
dynamics and its
optimal filtering

Determination of
model parameters

Introduction
Motivation and Overview

I The synapse is the site at which learning takes place
and at which memory is stored [1, 25].

I Modification of the rate of SVR contributes to both
short-term [18, 32] and long-term [23, 24] changes at
synapses.

I The rate of SVR has been linked to severe neurological
disorders, such as Parkinson’s disease [16, 26] and
Alzheimer’s disease [21, 33].

I A quantitative understanding of how various factors in
synaptic transmission determine the rate of SVR is
crucial to the understanding of the brain.
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Introduction
Existing models of synaptic vesicle release

Based on binomial statistics, the famous model by Katz [2]
assumed that there are ns independent docking sites, all of
which are occupied at all times, and that the probability
of a vesicle undergoes exocytosis (i.e., release) following the
arrival of a nerve impulse is p0. Then the probability that k
vesicles are released is

Pr(N = k) =
ns!

k!(ns−k)!
pk0 (1−p0)ns−k .
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Introduction
Existing models of synaptic vesicle release

I The assumption that ns is a constant is not accurate in
general.

I Several studies have reported that the number of docked
vesicles prior to each action potential is variable [19].

I Barrett & Stevens [5, 6] adopted a different approach:
they assumed that vesicle release at each docking site
occurs by a Poisson process with a time-dependent rate.

I In recent years, evidence has indicated that in many
synapses the statistics of vesicle release does not follow
a Poisson distribution [17, 29].

I Attempts to loosen the Poisson assumption led to the
development of models of vesicle pool dynamics, in
which ODEs are used to describe the replenishment of
RRP from recycle and reserve vesicle [8, 15, 20, 27].
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Introduction
Recent work by others

I Rosenbaum, et al. [22] showed that stochastic synapses
act as a high-pass filter, whereas deterministic synapses
encode any frequency equally well.

I Manwani & Koch [12] found that a single stochastic
synapse cannot transmit presynaptic spike density S(t)
reliably, but redundancy obtained using a small number
of multiple synapses leads to a significant improvement
in the reconstruction of S(t).



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Introduction

A simple model of
synaptic vesicle
release (SVR)

A more general
model of SVR

Simulation of
synaptic vesicle
dynamics and its
optimal filtering

Determination of
model parameters

An idealized model of SVR
Zhang & Peskin 2015 model with unlimited docking sites

I In a recent paper [30], Peskin and I considered an
idealized model synapse, in which we assumed that:

I vesicle docking occurs by a homogeneous Poisson
process with mean rate α0,

I presynaptic action potentials arrive by a stochastic
process with mean rate S(t) > 0, and

I each vesicle that is docked has a probability p0 to be
released upon the arrival of each action potential,
independently of other docked vesicles.
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An idealized model of SVR
Zhang & Peskin 2015 model with unlimited docking sites

I In this idealized case, we found that a small p0 helps
reduce the error in the reconstruction of desired signals
from the time series of vesicle release events.

I Below, I simulated SVR for 2,500 independent sample
paths and used optimal linear filter theory to reconstruct
S(t) or its damped derivative. Here, each realization of
stochastic process S(t) is a telegraph signal.
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An idealized model of SVR
Zhang & Peskin 2015 model with unlimited docking sites

I If we assume that presynaptic action potentials occur by
an inhomogeneous Poisson process with mean rate s(t),
then the expected rate of vesicle release r(t)
conditioned on this S(t) = s(t) is rigorously given by

d

dt

( r
s

)
= p0 (α0− r) . (1)

I To our knowledge, Eq. 1 is new. Its linearized form,
however, is closely related to the theory of Rosenbaum
et al. [22].

I Eq. 1 shows that during any time interval in which the
spike density s(t) is constant, the expected rate of
vesicle release r(t) approaches the mean rate of vesicle
docking α0.
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An idealized model of SVR
Zhang & Peskin 2015 model with unlimited docking sites

d

dt

( r
s

)
= p0 (α0− r) .

I When p0 is large, the rate of vesicle release converges
rapidly back to α0 whenever there is a jump in s(t).

I In the extreme case of p0 = 1, the time constant of the
exponential approach is equal to the mean interspike
interval after the jump in rate!

I In practice, when p0 = 1, the transient is too fast to be
detected by the postsynaptic neuron in the presence of
noise.

I In contrast, when p0 is small, it takes longer for the rate
of SVR to get close to α0, and this makes it easier for
the transient to be detected.
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An idealized model of SVR
Optimal filtering of SVR

I An example of this phenomenon can be seen below.

Desired signal: S(t) (presynaptic spike desnity)

Filtered output Unfiltered output

p
0
 = 1

p
0
 = 0.1

p
0
 = 0.5

I The unfiltered output
in the case of p0 = 1
shows essentially no
semblance of the
original signal.

I Hints of the original
signal begin to
appear in the
unfiltered output as
p0 is reduced.
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An idealized model of SVR
Optimal filtering of SVR

I This result is a general feature of our model, and is not
dependent on the Poisson assumption.

I This complete insensitivity to the absolute level of
stimulation is consistent with several experimental
observations [4, 11, 13, 32].

I A similar but less extreme insensitivity to low-frequency
signals would occur if we assumed a limited number of
docking sites.
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An idealized model of SVR
The high-pass nature of SVR

Suppose there are ns docking sites, and let α be the
probability per unit time that an empty docking site
becomes filled.
Then Eq. 1 implies that the expected rate of vesicle release
r(t) satisfies

d

dt

(
r(t)

s(t)

)
+ α

r(t)

s(t)
= p0

(
αns− r(t)

)
.

Now consider a small-amplitude perturbation to s(t) around
s0 and the resulting perturbation to r(t):

s(t) = s0

(
1 + εσ(t) +o(ε)

)
, r(t) = r0

(
1 + ερ(t) +o(ε)

)
.

Then s0 and r0 satisfy the steady-state equation

α
r0
s0

= p0 (αns− r0) .
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An idealized model of SVR
The high-pass nature of SVR

It follows that

r

s
=

r0
s0

(
1 + ε(ρ−σ) +o(ε)

)
,

and the first-order equation is

d

dt
(ρ−σ) + (α +p0s0)(ρ−σ) =−p0s0σ .

After taking Fourier transforms, this becomes

iω (ρ̂− σ̂) + (α +p0s0)(ρ̂− σ̂) =−p0s0σ̂ ,

or

ρ̂ =
iω + α

iω + α +p0s0
σ̂ .
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An idealized model of SVR
The high-pass nature of SVR

Let

G (ω) =
iω + α

iω + α +p0s0

so that

ρ̂(ω) = G (ω)σ̂(ω),

we have

G (0) =
α

α +p0s0
< 1,

G (∞) = 1.

Thus the system is always high-pass, but to make this a
strong effect, we require α � p0s0. If we let p0 vary with
other parameters fixed, we find that the high-pass effect is
strongest when p0 = 1, but even then it is only a strong
effect if α � s0.
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An idealized model of SVR
The high-pass nature of SVR

To go back to the case of an unlimited number of docking
sites, let

ns→ ∞,

α → 0,

in such a way that

nsα = α0.

Then G (0) = 0 and G (∞) = 1, regardless of the value of p0.
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A more general model of SVR
Model set-up: Zhang & Peskin 2020 model

We consider a more general model of SVR characterized by
four parameters [31]:

I the number of docking sites, ns

I the rate (i.e., probability per unit time) of vesicle
docking at each empty site, α

I the rate of undocking for each filled site, β

I the probability of release, p0, when an action potential
arrives, of each vesicle that is docked at that time.
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A more general model of SVR
Model set-up: Zhang & Peskin 2020 model

I The input to our model synapse is a sequence of action
potential arrival times . . .Tk . . ..

I The output of the model presynaptic terminal is a
sequence of random nonnegative integers, . . .Nk . . . ,
each of which is the number of vesicles released by the
corresponding action potential.

I Conditioning on {Tk}, we derive and solve a recursion
relation for Nk , and also a correlation function that
partially characterizes the statistics of SVR.

I Then we adopt the point of view that . . .Tk . . .
themselves are generated by a stochastic process and
are carrying information about an underlying continuous
signal, and we ask to what extent that signal can be
reconstructed by linear filtering of . . .(Tk ,Nk) . . .
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A more general model of SVR
Model set-up: Zhang & Peskin 2020 model

I We address the filtering question both analytically and
numerically.

I In the analytic case, we make simplifying assumptions
that are not needed when the problem is tackled
numerically.

I In both cases, we focus on the choice of the parameter
p0, and we find that the quality of the best signal
reconstruction that can be done depends on this choice.
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A more general model of SVR
Model set-up: Zhang & Peskin 2020 model

I Roughly speaking, the result is that p0 should be equal
to 1 when the effective number of docking sites is small,
but p0 should be small when the effective number of
docking sites is large.

I The latter case is interesting, since it implies that
randomness in vesicle release can be helpful for signal
preservation during synaptic transmission.

I The terminology “effective number of docking sites”
refers to the influence of the undocking process in
setting an upper bound that is smaller than ns on the
expected number of docked vesicles.
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A more general model of SVR
Model set-up: Zhang & Peskin 2020 model

I The optimal choice of p0 is also influenced by other
parameters such as the rate of arrival of action
potentials.

I We conclude by showing how the parameters of the
model can be identified from experimental data, and
also how the model can be tested experimentally.
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A more general model of SVR
Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

I The input to a synapse is a sequence of action potential
arrival times

. . . tk−1 < tk . . .

(Later, we will use the capital letter . . .Tk . . . when we
consider action potential arrival times that are
generated by a stochastic process.)
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A more general model of SVR
Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

I The synapse has some number ns of equivalent vesicle
release sites. Any particular site may be occupied or
unoccupied by a synaptic vesicle.
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A more general model of SVR
Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

Between action potential arrival times,

I every unoccupied site has a probability per unit time α

of becoming occupied, and

I every occupied site has a probability per unit time β of
becoming unoccupied.
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A more general model of SVR
Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

I Thus, between action potential arrival times, each site
obeys the reaction scheme

0
α−−⇀↽−−
β

1

in which 0 denotes an unoccupied site and 1 denotes an
occupied site.

I The changes that occur at one site are independent of
those occurring at any other site.
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Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

I At each Tk , every site that is occupied immediately
before Tk has the possibility of releasing the contents of
its vesicle and thereby becoming an unoccupied site.

I The probability that such release occurs at any
particular site is denoted by p0, and the decision
whether to release the vesicle or not is made
independently for each site. (p0 is also known as the
vesicle fusion probability.)
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Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

I Let D(t) be the number of docked vesicles at time t.

I Let Nk be the number of vesicles released by the arrival
of the k-th action potential.

I At any given time t between action potential arrival
times, D(t) changes in steps of ±1,

I and the probability per unit time that D(t) increases by
1 is α

(
ns−D(t)

)
,

I whereas the probability per unit time that D(t)
decreases by 1 is βD(t).
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A more general model of SVR
Zhang & Peskin, 2020, CPAM

N
k

N
k+1

D(t
k 
) D(t

k 
)

t
k

t
k+1 time

D(t
k+1
) D(t

k+1
)+ +− − ... vesicle docking

and undocking
 ...

p
0

p
0

vesicle release vesicle release

At the action potential arrival time tk ,

Pr(Nk = n |D(t−k ) = d) =

(
d

n

)
pn0 (1−p0)d−n,

and then, of course,

D(t+
k ) = D(t−k )−Nk .

We regard the sequence . . .(Nk ,Tk) . . . as the output of the
synaptic vesicle release process (i.e., the output of the
presynaptic terminal).
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A more general model of SVR
Nk , the expected number of vesicles released at each spike conditioned on
the spike arrival times

The first result is a recursion formula for Nk , the expected
number of vesicles released at each spike conditioned on the
spike arrival times . . . tk . . .
Let

γ = α + β ,

n∗s = αns/(α + β ),

then Nk , conditioned on {tk}, is given by the recurrence

Nk = (1−p0)Nk−1e
−γ(tk−tk−1) +p0n

∗
s

(
1− e−γ(tk−tk−1)

)
.

(2)

We call n∗s the effective number of docking sites.
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A more general model of SVR
Nk , the expected number of vesicles released at each action potential
conditioned on the spike arrival times

We can use Eq (2) to express Nk in terms of Ni for any
i < k . Multiplying both sides of (2) by the summation factor
eγtk/(1−p0)k , we obtain

Theorem
(Zhang & Peskin, 2020, CPAM) For any i < k, the expected
number of vesicles released at each action potential,
conditioned on the action potential arrival times {tk}, is

Nk =(1−p0)k−ie−γ(tk−ti )Ni (3)

+p0n
∗
s

k

∑
j=i+1

(1−p0)k−je−γ(tk−tj )
(

1− e−γ(tj−tj−1)
)
.
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A more general model of SVR
The autocovariance of Nk conditioned on the spike arrival times

Denote by ϕik the autocovariance of Nk :

ϕik = NiNk −Ni Nk .

The second result is a formula for the autocovariance of Nk

conditioned on the action potential arrival times.

Theorem
(Zhang & Peskin, 2020, CPAM) The autocovariance of Nk ,
conditioned on {tk}, is

ϕik =n∗s p0

k

∑
j=−∞

(1−p0)k−je−γ(tk−tj )
(

1− e−γ(tj−tj−1)
)

δik

− (n∗sp0)2

ns

[
i

∑
j=−∞

(1−p0)i−je−γ(ti−tj )
(

1− e−γ(tj−tj−1)
)]2

•

(1−p0)|k−i |e−γ|tk−ti | (4)

for all (i ,k), where δik is the Kronecker delta.
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Example

Let’s consider the special case of a regular spike train.
Conditioned on the action potential arrival times {tk}, where

tk − tk−1 =

{
(∆t)1 for k ≤ 0,
(∆t)2 for k > 0.
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The expected number of vesicles released at the time of the
k-th action potential is

Nk =





N((∆t)1) for k ≤ 0,

N((∆t)2) +
(
N((∆t)1)−N((∆t)2)

)
(1−p0)k e−kγ(∆t)2

for k > 0,

where N(∆t) is the steady-state expected number of vesicles
released at each spike under a constant spike train with
interspike interval ∆t > 0:

N(∆t) = p0n
∗
s

1− e−γ∆t

1− (1−p0)e−γ∆t
.
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We can re-express everything in terms of the rate of arrival
of action potentials and the rate of SVR by making the
definitions

sk =
1

tk − tk−1
, Rk =

Nk

tk − tk−1
, Rk =

Nk

tk − tk−1
.
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In terms of these variables,

Rk =

{
R(s1) for k ≤ 0,

R(s2) +
(
1−wk(s2)

)
+R(s1) s2

s1
wk(s2) for k > 0,

where

w(s) = (1−p0)e−γ/s ,

and R(s) is the steady-state rate of SVR when the rate of
arrival of action potentials is constant and equal to s:

R(s) =
N(s)

1/s
= p0γn∗s

1−e−γ/s

γ/s

1− (1−p0)e−γ/s
.
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The asymptotic behavior of the steady-state rate of SVR:

I As s → ∞, we have

lim
s→∞

R(s) = γn∗s = αn∗s .

(insensitive to the spike rate when it is large)
I As s → 0, we have

R(s)∼ p0n
∗
s s.

(proportional to the spike rate when it is small)



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Introduction

A simple model of
synaptic vesicle
release (SVR)

A more general
model of SVR

Simulation of
synaptic vesicle
dynamics and its
optimal filtering

Determination of
model parameters

A more general model of SVR
Example: a regular spike train

Furthermore, the autocovariance of Nk , given by (4),
simplifies to

ϕik = N(∆t)δik −
1

ns
(N(∆t))2

(
(1−p0)e−γ∆t

)|k−i |
,

where δik is the Kronecker delta function.
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-5 -4 -3 -2 -1 0 1 2 3 4 5

theory

stochastic simulation

fitted tail

I Note the height of the central peak and the amplitude of the
negative tails. Their ratio

r =

(
N− (N)2

ns

)/
(N)2

ns
=

ns

N
−1,

can be used as a check for our theory and parameter fitting.
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-5 -4 -3 -2 -1 0 1 2 3 4 5

theory

stochastic simulation

fitted tail

I If ns is large, the negative tail of the autocovariance will
be undetectable.

I As ns→ ∞, the random variables Ni and Nk are
uncorrelated for i 6= k .



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Introduction

A simple model of
synaptic vesicle
release (SVR)

A more general
model of SVR

Simulation of
synaptic vesicle
dynamics and its
optimal filtering

Determination of
model parameters

A more general model of SVR
The conditionally independent Poisson nature of the Nk

The autocovariance of Nk in the Example shows that, as
ns→ ∞, the random variables Ni and Nk become
uncorrelated for i 6= k .

This suggests that . . .Nk . . . are independent in a model
synapse with an unlimited number of docking sites; this is
indeed true, as proven below for arbitrary spike trains.
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Idea of the proof:
Let

PD(m, t) = Pr(D(t) = m), for m = 0,1,2, . . . (5)

Between action potentials, i.e., on a time interval (tk−1, tk),
the process governing D(t) is described by the diagram
below:

...

α0

!
#3β

m = 2

α0

!
#2β

m = 1

α0

!
#β

m = 0
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The conditionally independent Poisson nature of the Nk

The diagram corresponds to the equation

dPD

dt
(m, t) = α0

(
[m 6= 0]PD(m−1, t)−PD(m, t)

)

+ β

(
(m+ 1)PD(m+ 1, t)−mPD(m, t)

)
,

where the factor [m 6= 0] is 1 if the statement “m 6= 0” is
true, and is 0 if “m 6= 0” is false.
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The conditionally independent Poisson nature of the Nk

We look for a solution in which PD(m, t) is given by a
Poisson distribution with some unknown mean µD(t):

PD(m, t) =
(µD(t))m

m!
e−µD(t).

After some derivations, we get

dµD(t)

dt
= α0−β µD .

Since µD is the expected value of D, we have µD ≡ D.
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The conditionally independent Poisson nature of the Nk

I The above shows that if D is Poisson immediately after
any action potential, it remains Poisson up to the time
of the next action potential.

I But we also know that for every k the random variables
Nk and D(t+

k ) are obtained from the random variable
D(t−k ) by binomial splitting.

I Hence, if D(t−k ) is Poisson then Nk and D(t+
k ) are

Poisson and moreover they are independent random
variables.
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The conditionally independent Poisson nature of the Nk

I Since D(t+
k ) is the only possible link between Nk and

the whole future of the process, it follows that the value
of Nk has no influence at all upon that future, i.e., that
all of the Nk are independent.

I Thus, conditioned on the spike times . . . tk . . ., if the
process starts with a Poisson distributed number of
docked vesicles (e.g., 0), then all of the Nk are
Poisson-distributed and independent.

I The expected value of Nk conditioned on {tk} is
obtained by letting γ → β and n∗s → α0/β in the
recurrence relation.
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The optimal filtering problem for stochastic vesicle docking, undocking,
and releases

Theorem
(Zhang & Peskin, 2020, CPAM) In a model synapse with an
unlimited number of docking sites obtained by letting
ns→ ∞ while keeping αns ≡ α0 constant. Then, conditioned
on {tk}, if the process starts with a Poisson-distributed
number of docked vesicles (such as 0), then all of the Nk are
independent and Poisson-distributed with mean given by the
following recurrence

Nk = (1−p0)Nk−1e
−β(tk−tk−1) +

p0α0

β

(
1− e−β(tk−tk−1)

)
.

(6)
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The conditionally independent Poisson nature of the Nk

I It is surprising that the Nk are independent because it
may seem that Nk should depend on D(t−k ), which in
turn should depend on Nk−1.

I However, the independence of the Nk follows from the
Poisson nature of the numbers of docked vesicles, and
from the behavior of a Poisson random variable under
binomial splitting.

I Since the statistics of a Poisson-distributed random
variable are determined completely by its mean, the
Theorem provides a computationally efficient way for
large-scale simulation of SVR.

I We emphasize that, however, the independence of the
Nk only holds in the limit of an unlimited number of
docking sites.
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

· · · Tk · · ·

P2 · · · N k · · ·

h k N k h(t − Tk )

| | e(t)S (t)P1

Generate

action

potentials

Generate

desired

signal

Q(t)

+

−

By hypothesis, Q(t) is a desired signal with mean zero
generated from S(t); depending on the function of the
synapse, Q(t) can be S(t) itself or some other signal derived
from S(t).
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

The optimal filtering problem is stated as follows. Let

R(t) = ∑
k

h(t−Tk)Nk .

We seek h(t) to minimize E[e2(t)], where

e(t) = (R(t)−E[R(t)])−Q(t).

Thus, we are trying to find an impulse response h(t) of the
filter such that R(t) approximates Q(t) the best, but our
definition of error ignores mean values.
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

We proved the following result in the limit of small signals
(Zhang & Peskin, 2020, CPAM):

Consider a model synapse with an unlimited number of
docking sites (possibly with undocking allowed) obtained by
letting ns→ ∞ while keeping αns ≡ α0 constant. Suppose
the sequence of action potential arrival times . . .Tk . . . is a
perturbation of a sequence of equally spaced times

Tk = kτ + εT
(1)
k + · · ·

where τ is a given constant (the unperturbed period of the
spike train), and ε is a small parameter.
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

Suppose the stochastic process P1 that generates both Q(t)
and the sequence . . .Tk . . . is band-limited in the sense that
ϕ̂QT (ω) is supported on some interval (−ω0,ω0) with

ω0τ < π,

in which ϕ̂QT (ω) is the Fourier transform of the

cross-covariance of Q(t) and {T (1)
k } defined by

ϕQT (t−kτ) = E[Q(t)T
(1)
k ].
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

Then the impulse response h(t) of the filter that minimizes
the mean square error, to lowest order in ε, has Fourier
transform ĥ(ω) given by

ĥ(ω) =
ε

τ

(
ντ

N(τ)

1− e iωτ

1−ξe iωτ
+ iωτ

)
ϕ̂QT (ω), (7)

in which N(τ) is the mean number of vesicles released by
each spike when the spike train is perfectly regular with
constant interspike interval τ, and

ξ = (1−p0)e−βτ , (8)

ν = e−βτ α0p
2
0

1− (1−p0)e−βτ
. (9)
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release

The corresponding minimal mean square error, to lowest
order in ε, is

E[e2(t)] = ϕQQ(0)− ε2

2π

(
2

τ

)3 N(τ)

τ
•

∫
θ0

−θ0

(
ντ

N(τ)
sinθ

θ
− (1−ξ )cosθ

)2
+ (1 + ξ )2 sin2

θ

(1−ξ )2 cos2 θ + (1 + ξ )2 sin2
θ

θ
2

∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ ,

(10)

in which ϕQQ(t) is the autocovariance of the desired signal
Q(t) defined by

ϕQQ(t ′− t ′′) = E[Q(t ′)Q(t ′′)], (11)

and

θ0 =
ω0τ

2
. (12)
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The optimal filtering problem for stochastic vesicle docking, undocking,
and release
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Figure: Comparing the analytical estimate of the mean square
error in Eq. (10) to the numerically evaluated mean square error in
the regime of small signals (ε = 0.05). Here, the desired signal
Q(t) is the presynaptic spike density S(t), which is generated by a
smoothed dichotomous jump process.
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The optimal p0 for synaptic transmission

To make sense of the above result in the context of how p0

affects the fidelity of synaptic transmission, we proved the
following result:

Theorem
(Zhang & Peskin, 2020, CPAM) In a model synapse with
undocking (β > 0) and with an unlimited number of docking
sites obtained by letting ns→ ∞ while keeping αns ≡ α0

constant, the optimal p0 is given asymptotically by

p0 ∼
((

I0
I2

)
βτ

)1/3

as βτ → 0, (13)

provided that the assumptions made in the preceding
Theorem hold.
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The optimal p0 for synaptic transmission

I A nonzero undocking rate prevents the unlimited
accumulation of docked vesicles, so the above result
suggests that, in a synapse with a finite number of
docking sites, the best choice of p0 should be some
nonzero number.

I The exact optimal value of p0 would depend on the
parameters of vesicle docking and the statistics of the
signal ensemble.

I In the rest of the talk, I provide several numerical
examples of the optimal filtering of SVR where the
optimal p0 is a nonzero number under various
biologically relevant scenarios.
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Figure: Effect of probability of vesicle release per docked vesicle
(p0) on the mean square error (E[e2(t)]) in the estimation of the
presynaptic spike density S(t) and its derivative.
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Figure: Effect of the number of docking sites (ns) on the optimal
probability of vesicle release per docked vesicle (p0) in the
estimation of the presynaptic spike density S(t) and its derivative.
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Figure: Effect of probability of vesicle release per docked vesicle
(p0) on the mean square error (E[e2(t)]) in the estimation of the
presynaptic spike density S(t) and its derivative.
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Figure: A synapse with 100 docking sites and no undocking.
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Consider the inverse problem of estimating model
parameters. We first note that if we measure γ and n∗s , then
ns can be any integer such that

ns ≥ n∗s .

Once ns has been chosen, α and β are then determined by

α =
γn∗s
ns

,

β = γ

(
1− n∗s

ns

)
.

It is interesting to note that by considering the mean
behavior, it is impossible to distinguish models with the
same (γ,n∗s ) but different (α,β ). Such models, however,
produce different statistics.
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Figure: Parameter identification using our proposed method for a
model synapse with 100 docking sites and undocking.
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Südhof, T. C.; Rothman, J. E. Membrane fusion:
grappling with SNARE and SM proteins. Science 323
(2009), no. 5913, 474–477.

Tsodyks, M. V.; Markram, H. The neural code between
neocortical pyramidal neurons depends on
neurotransmitter release probability. Proc. Natl. Acad.
Sci. USA 94 (1997), no. 2, 719–723.

Wu, Y.; O’Toole, E. T.; Girard, M.; Ritter, B.; Messa,
M.; Liu, X.; McPherson, P.; Ferguson, S. M.; De Camilli,
P. A dynamin 1-, dynamin 3-and clathrin-independent
pathway of synaptic vesicle recycling mediated by bulk
endocytosis. eLife 3 (2014), e01621.



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Appendix

For Further Reading

For Further Reading VIII

Zucker, R. S.; Kullmann, D. M.; Schwartz, T. L.
Release of neurotransmitters. From molecules to
networks–an introduction to cellular and molecular
neuroscience, edited by J. H. Byrne and J. L. Roberts,
197–244. Academic Press, Waltham, 2009.

Zhang, C.; Peskin C. S. Improved signaling as a result
of randomness in synaptic vesicle release. Proc. Natl.
Acad. Sci. USA 112 (2015), no. 48, 14954–14959.

Zhang, C.; Peskin C. S. Analysis, simulation, and
optimization of stochastic vesicle dynamics in synaptic
transmission Commun. Pur. Appl. Math. 73 (2020), no.
1, 3–62.

Zucker, R. S.; Regehr, W. G. Short-term synaptic
plasticity. Annu. Rev. Physiol. 64 (2002), no. 1,
355–405.



Modeling Synaptic
Dynamics with

Randomness and
Plasticitiy

C. Zhang-Molina

Appendix

For Further Reading

For Further Reading IX

Zhang, C.; Wu, B; Beglopoulos, V.; Wines-Samuelson,
M.; Zhang, D.; Dragatsis, I.; Südhof, T. C.; Shen, J.
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