Malleability of gamma rhythms enhances population-level correlations

Sonica Saraf

NYU, Center for Neural Science

June 11, 2020

Joint work with Lai-Sang Young

Sonica Saraf (NYU, Center for Neural SciencMalleability of gamma rhythms enhances pop

June 11, 2020 1 / 32

Outline

A local population of neurons

- Modeling one neuron
- Properties of a population

2 Numerical study of correlations between neuronal populations

- 3 Comparison with rigid oscillations
- 4 Mechanistic explanations for observed phenomena

Membrane potential of a neuron

Leaky integrate-and-fire equations:

normalized membrane potential V of a neuron n is governed by

$$\dot{V}=-rac{1}{ au_{leak}}V-(V-V_E)g_E-(V-V_l)g_l$$

3 / 32

Membrane potential of a neuron

Leaky integrate-and-fire equations:

normalized membrane potential V of a neuron n is governed by

$$\dot{V}=-rac{1}{ au_{leak}}V-(V-V_E)g_E-(V-V_l)g_l$$

- V is usually between [0,1], a spike occurs when V = 1, and V is reset to 0 for some time after
- 3 forces act on V:
 - Leakage to 0
 - E current
 - I current

Membrane potential of a neuron

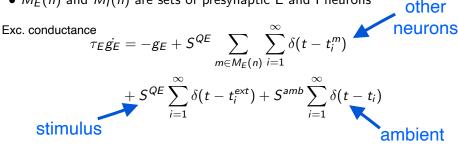
Leaky integrate-and-fire equations:

normalized membrane potential V of a neuron n is governed by

$$\dot{V}=-rac{1}{ au_{\mathit{leak}}}V-(V-V_{\mathit{E}})g_{\mathit{E}}-(V-V_{\mathit{l}})g_{\mathit{l}}$$

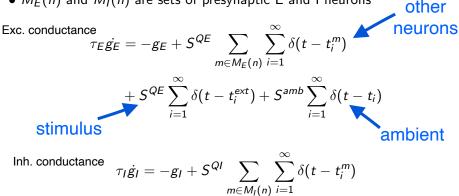
- V is usually between [0,1], a spike occurs when V = 1, and V is reset to 0 for some time after
- 3 forces act on V:
 - Leakage to 0
 - E current
 - I current

n

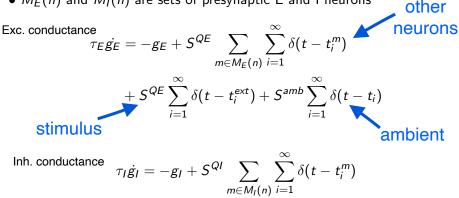

Evolution of g_E and g_l :

- neuron *n* is of type $Q \in \{E, I\}$
- $M_E(n)$ and $M_I(n)$ are sets of presynaptic E and I neurons

Exc. conductance $\tau_{E}\dot{g_{E}} = -g_{E} + S^{QE} \sum_{m \in M_{E}(n)} \sum_{i=1}^{\infty} \delta(t - t_{i}^{m}) + S^{QE} \sum_{i=1}^{\infty} \delta(t - t_{i}^{ext}) + S^{amb} \sum_{i=1}^{\infty} \delta(t - t_{i})$


Evolution of g_F and g_I :

- neuron *n* is of type $Q \in \{E, I\}$
- $M_F(n)$ and $M_I(n)$ are sets of presynaptic E and I neurons


Evolution of g_F and g_I :

- neuron *n* is of type $Q \in \{E, I\}$
- $M_F(n)$ and $M_I(n)$ are sets of presynaptic E and I neurons

Evolution of g_E and g_l :

- neuron *n* is of type $Q \in \{E, I\}$
- $M_F(n)$ and $M_I(n)$ are sets of presynaptic E and I neurons

- τ_{Q} is a biophysical constant for conductance leakage
- Main parameters, S^{EE} , S^{EI} , S^{IE} , S^{II} and external drive rate, based on experimental data

Sonica Saraf (NYU, Center for Neural SciencMalleability of gamma rhythms enhances pop

Membrane potential over time

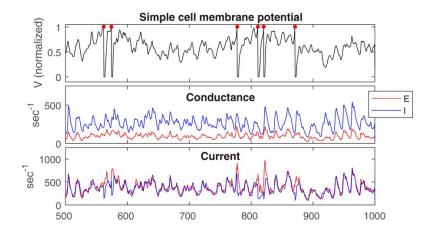
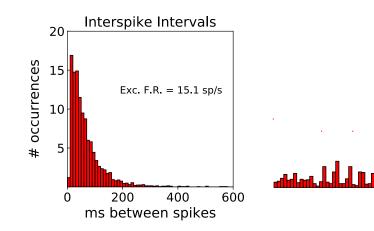


Figure 2 A-C; Chariker, Shapley, and Young 2018


Assembling a local population

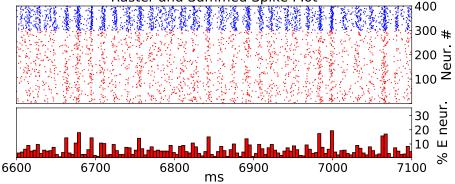
- $N_E = 300, N_I = 100$
- \bullet E neurons postsynaptic to \approx 80 E neurons and \approx 50 I neurons
- \bullet I neurons postsynaptic to \approx 240 E neurons and \approx 50 I neurons

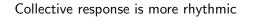
To Note:

- The size of local populations in hundreds to thousands of neurons
- As in the brain, not all-to-all nor sparse coupling
- The $\mathsf{E}\to\mathsf{E}$ connections are less dense, due to anatomical data

Simulation statistics

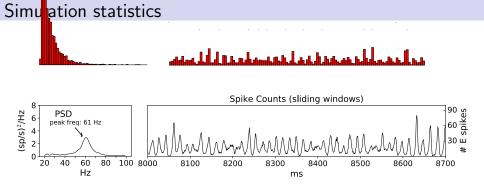
June 11, 2020


8 / 32


Individual neurons behave almost randomly

Sonica Saraf[5mm] Joint work with Lai-Sang Malleability of gamma rhythms enhances pop

Simulation statistics



32

- Population rhythm has a peak frequency in the gamma-band
- Rhythm is broad-band, and not periodic. It has oscillatory and irregular components, and also degrades sometimes

• Evident in population activity, but not individual neuron activity. It is an *emergent* phenomenon

3

8 / 26

• Evident in population activity, but not individual neuron activity. It is an *emergent* phenomenon

• Observed all over the brain, including in subcortical structures

• Evident in population activity, but not individual neuron activity. It is an *emergent* phenomenon

• Observed all over the brain, including in subcortical structures

• Shown to be altered in abnormal states, such as in schizophrenia and Parkinson's disease. Strengthened gamma is also observed with increased attention and stimulus intensity

• Debated whether it is involved in cortical processing, or simply a byproduct of neuronal interactions

• Evident in population activity, but not individual neuron activity. It is an *emergent* phenomenon

• Observed all over the brain, including in subcortical structures

• Shown to be altered in abnormal states, such as in schizophrenia and Parkinson's disease. Strengthened gamma is also observed with increased attention and stimulus intensity

• Debated whether it is involved in cortical processing, or simply a byproduct of neuronal interactions

• irregular, episodic, broadband, and degrades sometimes while still having an oscillatory component

イロト イポト イヨト イヨト 二日

Outline

- Modeling one neuron
- Properties of a population

2 Numerical study of correlations between neuronal populations

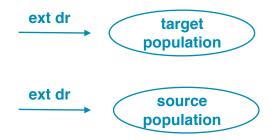
- 3 Comparison with rigid oscillations
- 4 Mechanistic explanations for observed phenomena

Our motivation

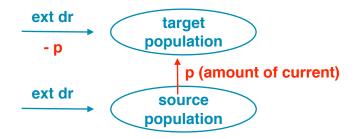
Fries, 2005; 2015 communication through coherence (CTC) hypothesis:

- Effective communication is subserved by synchronization between preand post-synaptic populations
- ". . . communication is prevented by the absence of a **reliable phase relationship between the oscillations** in the the sending and the receiving group." Fries, 2005

Our motivation


Fries, 2005; 2015 communication through coherence (CTC) hypothesis:

• Effective communication is subserved by synchronization between preand post-synaptic populations


• ". . . communication is prevented by the absence of a **reliable phase relationship between the oscillations** in the the sending and the receiving group." Fries, 2005

• Can the gamma-rhythms of a receiving population be entrained by a sending population, even when displaying the **irregular**, **broad-band rhythms typical of sensory cortices**?

Connecting two populations

Connecting two populations

4 D N 4 B N 4 B N 4 B N

-

Typically p ~ 7-10% total E-current

							-				
Sonica Saraf ((NYU, Center for	Neural Scienc	Malleability of	gamma rhy	thms enhances	рор		June 11	, 2020	13	/ 31

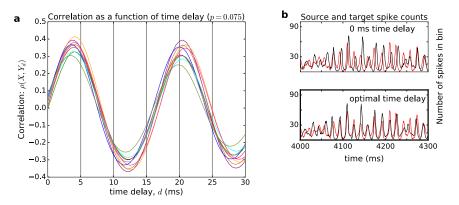
Definition of correlation metric

One way to measure the coherence between the spiking activity of two neuronal populations:

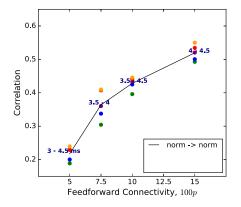
- Fix a large time interval [0, T]

- X and Y are random variables defined on the probability space $\Omega = \{0, 1, ..., T - 4\}$, and equal probability is assigned to each sample point

- X(t) = "instantaneous" population firing rate (total number of spikes) of source on 4 ms: [t, t + 4)

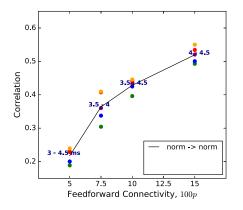

- Y(t) defined similarly for the target

$$\rho(X, Y) = \frac{COV(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

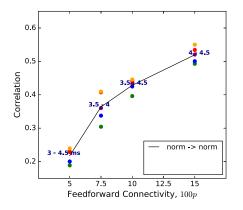

◆ロ → ◆ 同 → ◆ 臣 → ◆ 臣 → ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Existence of the optimal time delay

Consider now the correlation between X(t) and Y(t+d), where d is some number of ms

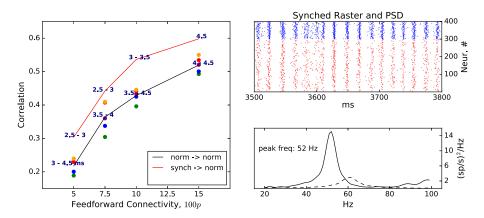


The optimal delay is **independent of initial condition** and network realization

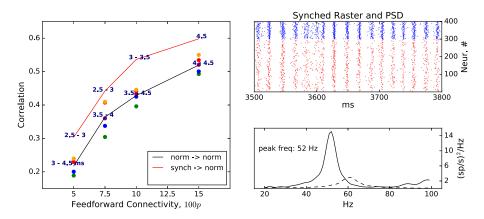


э.

- E



• Correlations are quite high (.2 - .6) considering the source only applied a small percentage of current to the target



- \bullet Correlations are quite high (.2 .6) considering the source only applied a small percentage of current to the target
- Optimal time delays are independent of initial condition

Sonica Saraf (NYU, Center for Neural SciencMalleability of gamma rhythms enhances pop June

э

• Correlations are higher when the source is more synchronized, regardless of differing peak frequencies

To recap

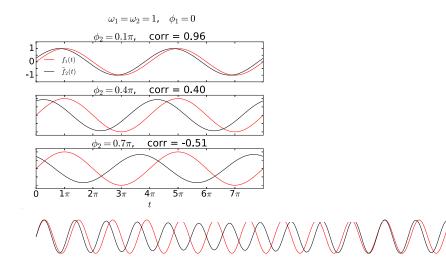
- CTC hypothesis: reliable phase relationships are needed for effective communication between neuronal groups; higher synchrony leads to better communication (Fries, 2005; 2015)
- Many gamma-rhythms in the brain are actually broad-band and irregular, making a reliable phase relationship between two of these rhythms near impossible yet correlations are high
- **Question:** How might communication be possible when irregular rhythms are involved?

イロン 不良 とくほう イヨン 二日

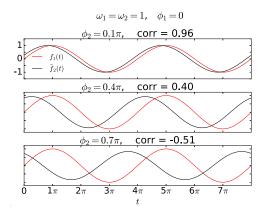
Outline

- Modeling one neuron
- Properties of a population

2 Numerical study of correlations between neuronal populations

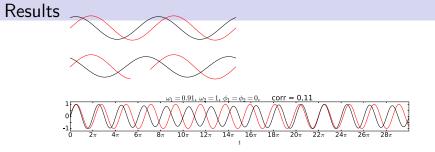

3 Comparison with rigid oscillations

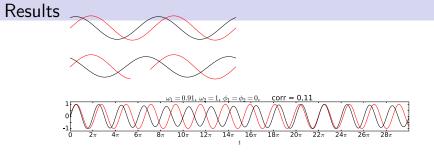
4 Mechanistic explanations for observed phenomena


Sonica Saraf (NYU, Center for Neural SciencMalleability of gamma rhythms enhances pop

Setup:

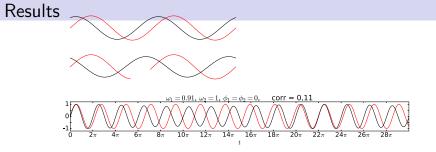
- The two systems: $f_i(t) = \sin(\omega_i t + \phi_i)$, i = 1, 2
- If p again represents the percentage of feedforward connectivity, the target's new system is written as $\tilde{f}_2(t) = pf_1(t) + (1-p)f_2(t)$
- Correlations between $f_1(t)$ and $ilde{f}_2(t)$ are computed as before
- In the following, p = 0.1


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?



If frequencies that the correlations are quite bigh when the initial phases match; i.e., optimal delay depends on initial phase

3 June 11, 2020 21 / 32


A B F A B F

• In shorter time samples, correlations depend on initial phase

3

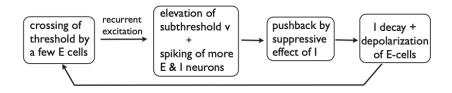
- In shorter time samples, correlations depend on initial phase
- If frequencies don't match, large time-correlations don't exceed \approx 0.1 (time $\rightarrow\infty$ case)

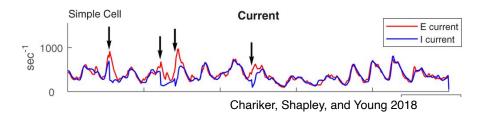
Q1 How can a mere 7.5 percent connectivity cause the source and target to show such nontrivial alignment?

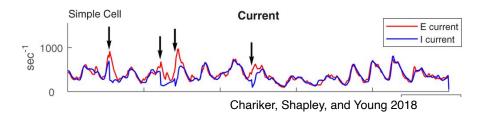
Q2 Why should there be a notion of intrinsic optimal delay that is independent of initial condition?

Q3 Why do more synchronized sources produce higher correlations, even though frequencies are incommensurate?

Outline

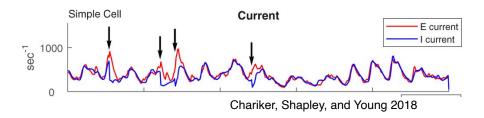

- Modeling one neuron
- Properties of a population

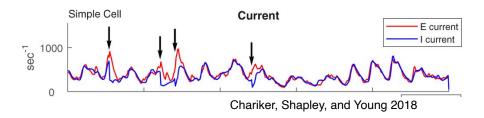

2 Numerical study of correlations between neuronal populations


- 3 Comparison with rigid oscillations
- 4 Mechanistic explanations for observed phenomena

Gamma rhythms in single populations:

- Multiple firing events (MFEs) are instrumental in creating gamma-band rhythms (Rangan and Young 2013a,b)
- Recurrent-excitation-inhibition (REI) describes how MFEs and the gamma-band rhythm comes about (Chariker, Shapley, Young 2018):





• E and I currents into a cell are tightly coupled, moment-by-moment

26 / 31

- E and I currents into a cell are tightly coupled, moment-by-moment
- Small amounts of excess E current are able to cause spikes (indicated by arrow)

- E and I currents into a cell are tightly coupled, moment-by-moment
- Small amounts of excess E current are able to cause spikes (indicated by arrow)
- Gamma-rhythms are **malleable** to increased external input concentrated input from the source population provides exactly this

Question 1:

How can such small levels of connectivity lead to such nontrivial alignment between source and target?

Question 1:

How can such small levels of connectivity lead to such nontrivial alignment between source and target?

 \bullet The REI mechanism creates a rhythm, but there is no specific timing for it

How can such small levels of connectivity lead to such nontrivial alignment between source and target?

 \bullet The REI mechanism creates a rhythm, but there is no specific timing for it

 \bullet The susceptibility to external input allows the target to align itself to the source's MFEs

Question 2:

Why should there be a notion of intrinsic optimal delay that is independent of initial condition?

Question 2:

Why should there be a notion of intrinsic optimal delay that is independent of initial condition?

• The optimal delay is the statistical average of time it takes to build an MFE in the target

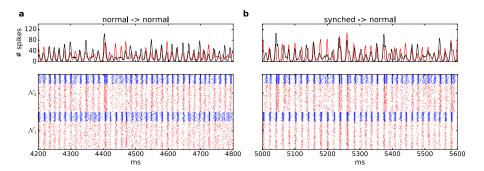
Why should there be a notion of intrinsic optimal delay that is independent of initial condition?

- The optimal delay is the statistical average of time it takes to build an MFE in the target
- The irregularity and degradation of gamma rhythms allow the target to realign itself with the source by allowing the system to lose memory of earlier phases

Question 3?

Why do more synchronized sources produce higher correlations, even though frequencies are incommensurate?

Why do more synchronized sources produce higher correlations, even though frequencies are incommensurate?


• Synchronized sources have larger MFEs, which are stronger at entraining the target

Why do more synchronized sources produce higher correlations, even though frequencies are incommensurate?

• Synchronized sources have larger MFEs, which are stronger at entraining the target

• The frequencies being different is an opposing force, that likely lowers correlations

Illustration

June 11, 2020 30 / 31

• Gamma rhythms do help synchronize populations, thereby increasing correlations

(日) (同) (三) (三)

3

- Gamma rhythms do help synchronize populations, thereby increasing correlations
- The oscillatory aspect of gamma helps, but does not account for the several phenomena discussed

- Gamma rhythms do help synchronize populations, thereby increasing correlations
- The oscillatory aspect of gamma helps, but does not account for the several phenomena discussed
- Irregularity and malleability permit high correlations and consistent optimal delays regardless of initial conditions

31 / 31

- Gamma rhythms do help synchronize populations, thereby increasing correlations
- The oscillatory aspect of gamma helps, but does not account for the several phenomena discussed
- Irregularity and malleability permit high correlations and consistent optimal delays regardless of initial conditions
- Correlations can never be too high (due to degradation) or too low (due to malleability)

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Gamma rhythms do help synchronize populations, thereby increasing correlations
- The oscillatory aspect of gamma helps, but does not account for the several phenomena discussed
- Irregularity and malleability permit high correlations and consistent optimal delays regardless of initial conditions
- Correlations can never be too high (due to degradation) or too low (due to malleability)
- This is "a new paradigm in dynamical systems," Lai-Sang Young. It is important to study behavior in between the extremes of chaotic and periodic, as are rhythms produced naturally by the brain