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Combustion model for a one-dimensional fuel

U = 0 U + Vg(U), U= U(x,t) temperatura
Vi = €0V — kVg(U), V = V(x,t) concentration of unburnt fuel

{eb, if U>0

g(U) = unit reaction rate, 1 >>¢>0, K > 0.

0, if U<0

€ = 0 when the fuel is solid.

k is the exothermicity, the larger k is the more fuel one has to burn
to achieve a given increase of the temperature.

U = 0 background temperature (no reaction).

Traveling combustion front ¢(&) = (U(€), V()), € = x — ct,

¢ > 0 speed of the front moving to the right. Behlnd the front

(U, V) = (U_x,0) (burnt fuel). Ahead of the front

(U, V) = (0, Vi) (concentration of unburnt fuel V4o > 0).

We study one- and multidimensional generalizations of this
reaction-diffusion system



Overview

Introduction: no formulas, just pictures

Stable foliations in vicinity of a traveling front for one dimensional
reaction diffusion systems

Planar fronts in multidimensional reaction diffusion systems



We study stability of front solutions of nonlinear equations. For
existence see [Berestycki, Larrouturou, P.L. Lions], [Berestycki,
Nirenberg], [Fiedler, Scheel, Vishik], [Fife], [Hamel, Roquejoffre],
[Henry], [Haragus, Scheel], [Kapitula, Promislow], [Morita,
Ninomiya], [Rabinowitz], [Sandstede], [Volpert, Volpert, Volpert],
[Xin] and many others.

Planar fronts are solutions to partial differential equations that
move in a given direction with constant speed without changing
their shape and are asymptotic to spatially constant steady-state
solutions, the end states. Translations of fronts are also fronts. We
prove orbital stability of fronts, that is, show that a small
perturbation of a front evolves to a translation of the front
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See Bates, Henry, Jones, Pego, Sandstede, Sattinger, Scheel,
Volpert, Volpert, Volpert, Weinstein — many many others —
classical book by [Volpert®], newer book by [Kapitula/Promislow])
Let Y(t, Y(0)) be the solution to a reaction-diffusion system

Y: = DY + cYx + R(Y) that has a traveling front solution ¢,
that is, Doy + cox + R(¢) = 0.

Decompose: Solution = component in the direction of the front +
normal to the front,

Y(t,Y(0)) = &(- — q(t)) + v(t), where Y(0) is close to ¢.
Linearize at the wave ¢, let £1 be the 1-dimensional linear operator
obtained by the linearization. Since ¢, satisfies £1¢, = 0, the
spectrum of £ contains 0. Assume 0 is the only unstable spectrum
of £1. Let Ps be the projection on the stable part of the spectrum.

V= (Lilranp,)v +small(v,q) = |lv(t)llg, < Ce™*
g = O(the eigenvalue) +small(v,q) = q(t) — g«
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Sp(Ly|ran P.) = {0}, ran P. = span{¢’}



Orbital Stability: Y(t, Y(0)) = ¢(- — qx).
Ran P;
Y(t; Y(0))
¢(-—q)

? o(- — g4) Ran P.




Newer work by many including [Ghazaryan/Latushkin/Schecter]
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Spectrum is good, nonlinearity is bad, so one needs to pass to the
intersection space & N &,, see [GLS]. Then:

Iv(B)lles < Ce™% V() < C,q(t) = g

Moreover, in appropriated variables v = (vy, v») with vy € R™,
vo € R™, ny 4+ np = n, we have ||vi(t)|lg, < C, |[va(t)|g, < Ce 1.



We prove for each g a stable manifold exists through ¢(- — q).

Ran Ps
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Y = (92 + A))Y +cO Y + R(Y)

O(x1, %2, ooy Xd) = P(x1)







Linearization £ as in [Kapitula] is given by

(Lu)(x1,y) = (L1u(-,y))(a) + (Ayulx, -))(y)
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Yy = (02 +4,)Y +coq Y + R(Y)
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V= [’|ran(Ps(X)®ly)V + small(v, q)
qg=Ayq+small(v,q).

A
1€ || 1 (me-1) = ik (re-1) < A+ 0@

=[lq(t) ||y« (re—1) — 0 algebraically as ¢ — oo

lv(t)|le, — O algebraically as t — oo.
Since the drift along the front fades away

= Y(t,Y(0)) > ¢ as t— oo algebraically



Linearization (Lou)(x1,y) = (El,au(~ ,y)) (x1) + (Ayu(xl, )) (v)
in the current work

Pass to the weighted space
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Spectrum is good, nonlinearity is bad, and we pass to the
intersection space & N &,. We prove that

[v(t)lle, < C
C
poly. of t -
C

t < — .
I9(8) lsqraty < ooy =0

Iv(t)lle < 0

Moreover, in appropriate variables v = (v1, v2),

vi(t)lle, < C;
C

e, < ———— —
(el < —o=sr

0,

as t — o0.



Consider the system of reaction diffusion equations,
Yi(t,x) = DO Y(t,x) + R(Y(t,x)), Y eR", x e R, t >0, (1)

where D = diag(di,--- ,d,) with all d; > 0, and the function R(:)
is smooth and satisfies some additional special properties listed
later. A typical example that we have in mind is the following
system from solid combustion for Y = (U, V):

{Ut(t,x) = 9 U(t, x) + V(t,x)g(U(t, x)), U,V € R, )

Vi(t, x) = e0x V(t, x) — kV(t, x)g(U(t, x)), x € R,

where )
et ifU>O0;:
U) = ' 3
g(U) {0 U0 3)



Passing to the moving coordinate frame & = x — ct and redenoting
& again by x, we arrive at the nonlinear equation

Yt:DYxx+CYX+R(Y), XER, tZO (4)

Assume that system (4) admits a traveling wave solution ¢(x) that
converges to the end states ¢4 as x — oo exponentially; i.e.,

[p(x) —p-| < Ce™¥%,  x <0, (5)
[6(x) — b4 < Ce™+, x>0,
for some w_ < 0 < wy and C > 0. Without loss of generality, we

also assume that ¢_ = 0.

¢ ¢q:¢('_q)

//




We study the system on the unweighted space & = H'(R) since it
is closed under multiplication, and denote the norm on & by || - ||o-
Let o = (a_,ay) € R2. We say that 7, : R — R is a weight
function of class « if 74 is C2, v4(x) > 0 for all x € R, and

Ya(x) = €*=* for x < —xp and v,(x) = e*+* for x > xg for some
Xxp > 0. We assume that 0 < a— < —w_ and 0 < a4 < wq,
where wy are the exponents that control the decay of ¢ to ¢+.
Given such a pair & = (a—, a4 ), we introduce the weighted space
Eo ={u:R—=R":y,u € &} with the norm |u|o = |Yaulo. The
intersection space £ = & N &, is endowed with the norm

|ule = max{]ulo, [ula}

Example: 7, (x) = e, & = HY(R), &, = {u: e™u € HY(R)}.
Isometry M, : £ — &b : u+— e* u. The operator Oy o : u+— U’ on
&, is similar via MQOX,QM;1 = Ox,0 — @ to Oy 0 — o, where

Ox0 : U U, because Dy oMy 1u = (e7%u) = e (v — a).



We further assume that the nonlinear term R in

Y: = DYy« + cYx + R(Y) has the following product structure: The
nonlinear term R belongs to C*(IR",R"). In appropriate variables
Y = (U, V)T with U € R™, V € R™ and ny + ny = n, we have

for a constant n; X n; matrix A;. In other words, we suppose that

(AU FR(U, V) (AU +R(U, V)V
R(U’V)_< 1R2(UTV) >_< 1/§2(UTV)V >

where the maps R; belong to C3(R",R") and satisfy R;(U,0) =0

for j € {1,2} and U € R™. Note that condition (6) yields
R(0,0) = R(¢—) = 0. We also split

D; 0 : :
D= ( 01 D2> . Dy =diag(ds,...,dn), Do=diag(dn+1,...,dn).



Let g € R. We write ¢g(x) = ¢(x — q) for the shifted wave.
Linearizing Y: = DY, + cYx + R(Y) at ¢q, we arrive at

Ye = LgY + Fo(Y), where LyY = DY + cYy + Oy R(¢q)Y. (7)

Here, the nonlinear term F, : R” — R" is written as

1
Fo(Y) = /0 (Oy R(¢pg + tY) — Oy R(dq)) Ydt. (8)

The linearization of Y; = DY, +cYx + R(Y) at ¢_ = (0,0)7 is
Y =L"Y + G(Y), where LY = DYy + cYx + Oy R(O)Y (9)

and G:R" = R"; G(Y)=R(Y)—-0yR(0)Y.



Linearization LqY = DY + cYx + 0y R(¢q)Y

We will impose conditions on Ly at g = 0; i.e., on the linearization
at the original traveling wave ¢. We further consider L, for

lg| < go with some g > 0.

Linearization L™ Y = DY, + cYx + Oy R(0)Y

(A1 0yRi(0,0) _ (L™ 5yR(0,0)
A0 = ( 0 dvR:(0,0))" =10 L@
(10)
with the differential expressions
LOU = DyUp + cUy + AU,
LAV = Dy Vi + Vi + 8y Ra(0,0) V.



Assumptions on linearization LY = DY, + cYyx + Oy R(¢q) Y:
We assume that there exists a = (a_, ) € R? such that

sup{Re\ : X\ € Spess(L0,o)} < 0 for the differential operator
on &, generated by Lg.

The only element of Sp(Lo,) in {A € C:ReX >0} is a
simple eigenvalue at A = 0 with ¢’ being the respective
eigenfunction.

We let Pg denote the spectral projection for Lg 4 in &, onto

ker Lg.o = span{qﬁ’c’} and the complementary projection by

P; =1 — Pg. Denote by { T4(t)}+>0 the semigroup generates by
Lg, this implies || Tq(t) P55,y < Ce™*.



Assumptions on linearization

&)
LY = DY+ Y + Oy R(O)Y = (Lo 8\/%?’ O)> Y

Denote by {S1(t)}¢>0, {S2(t)}>0 the semigroups generated by
LOU = DyUp + cUy + ALU, LV = Dy Vi + c Vi + 0y Rx(0,0) V
on & for the decomposition Y = (V, U) and assume the following:
The strongly continuous semigroup {S1(t)}+>0 is bounded and the
semigroup {S2(t)}+>0 is uniformly exponentially stable on &:

151(t)ll 3() < € 152(t) ]l 5(g5) < Ce™"*

for some p > 0 and all t > 0.
This also implies (a lemma):

15(t)l(ey) < €, forall £ 0. (11)

sup sup || Tq(t)l5e) < oo,- (12)
lq|<qo =0



Yo = LgY + Fo(Y), Fo(Y) = [y (OyR(¢q + tY) — Dy R(4)) Ydt.
Assume that o = (a—, a4 ) satisfies 0 < a— < —w_ and

0 < a; < wy, and that the nonlinearity R € C*(R", R") fulfills
R(U,0) = (A1U,0). Let §; > 0 and choose a radius § € (0, 61].
Then for all functions y = (u, v) and y = (&, V) from & with
lyle,|¥]e < 6 the estimates

|Fa(¥)lo < Clylo (Iyla + [vlo), (13)
|Fa(¥)la < Clylo|ylas (14)

|Fa(y) = Fa(@)lo < C(ly — 7lo (Iyla (15)
+ |¥la) + ly = ¥lo|vlo + [7lo|v — ¥]0),  (16)

|Fa(y) = Fg(#)la < |y = 7la (Iylo + 7o) (17)

are true, where C = C(61, qo) and |q| < qo.



We next establish basic properties of the Lyapunov-Perron operator
Dq(y, 20) for Yy = LgY + F4(Y) defined by

Oaly. 20)(£) = To(t)Pozo + /Ot Tolt — 7)PSFaly(r))dr

00 (18)
- [ ety ren
where |g] < qo and zy € & N E, = & satisfies
‘Zo|g = maX{|Zo|o, |20|a} < dp, forsome dg > 0. (19)

For continuous y = (u,v) : R — & = & N &, we define the norms

s = sup &y ()la 1¥lloo = 5up y(D)lo, 1V]l0 = sup eIy ()lo,
>0 >0 >0

Here we have to modify these exponents such that 0 < w < p < v.

Let 6 > 0. Then Bs(]| - ||) is the set of continuous functions

y:R — & N &, such that

IVlw.0) < 6. (20)

lyll := max (Hyuw,aa



Oy, 20)(t) = on+/ Tolt — 7)PSFa(y(r))dr
0 (21)
/ Foy(r)dr,  Yi=LgY + Fo(Y).

(Lq generates { Ty(t)}, ker(Lq) = ran Pg thus Ty(t — 7)Pg = Pg)
Take go > 0. Let § > 0 and dp = dp(d) > 0 be small enough. For
each zp € Bs,(|-|¢) the Lyapunov-Perron operator y — ®4(y, z0)
leaves Bs(|| - ||) invariant and is a strict contraction on this ball for
all |g| < go. Moreover, for the norm || - || defined in (20) one has

[®4(y, 20) — Pq(¥, 20)I| < Clz0 — Zole + Colly — ¥l (22)

for some C > 0 and all z9, 2y € Bs,(| - |¢), v, ¥ € Bs(]| - ||), and
gl < qo.



We will now foliate a small neighborhood of ¢ by stable manifolds
MG, going through ¢q.

Ran Ps

ol N Ran P,




For a small go > 0 and each g € [—qo, qo], we now construct a
function mg : ran(Pg) — Pg whose graph contains ¢4 and it is a
stable manifold Mg, for the system Y; = DY,y + cYi + R(Y).

We further prove that the sets Mg satisfy the standard properties
of stable manifolds and that they foliate a small neighborbood of ¢.
Let 4,9 > 0 be sufficiently small and go > 0. Take |g| < go and
zo € ran(Pg) N Bsy (| - |¢). There exists a unique function

yz : Ry — & which belongs to Bs(]| - ||) and is a fixed point of the
Lyapunov-Perron operator ®4(-, z); that is, for t > 0,

(e.9]

Y () = To(t)2o + /O Tolt — 7)PSFo(yd (r))dr - / PEF(y3 (7)) dr
— To(t)[20 - /O " PeEa (3 (r)dr] + /0 Tolt — 7)Fa(y3 (7)) dr.



We define the function mg : ran(Pg) N Bs(| - [¢) — ran(Pg) by

mo(zo) = - | " PEFa(yE (r))dr (23)

The fixed point y = y7 of the Lyapunov-Perron operator contained
in Bs(|| - ||) satisfies e“t|y(t)|a < 0, |y(t)]o < & and the equation

y(t) = T4(t)y(0) + /Ot Tq(t — 7)Fq(y(7))dT, t>0. (24)

For a number 7 > 0 to be fixed below, the stable manifold M3 is
then defined as the graph of my(-) shifted to ¢, by

MG = {¢q+20+mg(20) : 20 € ran(Pg)NBsy(|-[£)} N (o +By(]-[e)),

where |g| < qo and ¢ + B, (] - |¢) is the closed ball in £ =&, N &
with radius 7 and centered at the original traveling wave ¢.



Let qo, 9, d0,n > 0 be sufficiently small, |q| < qo, and

0 <w < p <. Then the ball $ +B,(| - |¢) is foliated by the
stable manifolds Mg, for the nonlinear equation

Y: = DYy + cYx + R(Y) and the following assertions hold.

Each Mg is a Lipschitz manifold in €. If Y(0) € Mg and the
mild solution Y (t; Y(0)) of Y: = DYy« + cYx + R(Y') belongs
to ¢ + B, (|- |e) for some t > 0, then Y(t; Y(0)) is contained
in Mg.
For each Y (0) € M, there exists a solution Y (t; Y (0)) of
Y: = DYxx + cYx + R(Y) which exists for all t > 0 and
satisfies | Y (t; Y(0)) — ¢gle < 0 as well as

V(£ Y(0)) — dala < C= [ Y(0) — yle,

(Y (£ Y(0)) = ¢q) = Uglo < C|Y(0) — oqe,

(Y (£ Y(0)) — ¢q) — Valo < Ce™[Y(0) — ¢gle
for all t > 0. Here, ¢pq = (Ug, Vq) = ¢(- — q) is the shifted
traveling wave, m : Y = (U, V) — U, and
m:Y =(U,V)—= V.



If Y(t; Y(0)), t >0, is a mild solution of

Y: = DY + cYi + R(Y) with Y(0) € ¢ + B,(| - |¢) that
satisfies properties (a)—(c) in item (ii), then Y(0) belongs to
Mg,

For q # g, we have Mg N Mg = (. Moreover,

¢ +Bn(| “le) = U|q\§q0 Mf,-

The map [—qo, qo] — ran(Pg); q = my(P320), is Lipschitz
for each zg € B, (| - |¢).



Ran P;

SO N Ran P,

For each Y(0) € ¢ + B, (] - |¢) there exists exactly one shift
g € [~qo, qo] such that Y(0) € Mg,



We show that || Y(t)||, exp decay, || Y(t)||g, bounded for

Y: = DY + cYx + R(Y), Y = (U, V). As P¢ is one dimensional
thus easy, consider P°Y. Use bootstrap: 0 < v < 4 if

Y (0)|le <y then ||Y(t)|ls <6 forall t < Tmax(7,9) < 0.

1) As long as || Y(t)||g, is small, || Y(t)]|., exp decay by Gronwall's
because T(t)P® exp decay in B(&,),

PeY (1) = T(t)PSY(OH/O T(t=s)PO( Y (s)lle x[IY (s)llen ) ds

2) As long as || Y(t)||e, exp decay, || Y(t)||g, is small by Gronwall’s
because S;1(t)P* is bounded and S>(t)P® exp decay in B(£0),

u(t) = 51(t)U(0)+/0 S1(t=s) O(([[U(s)ll o+ 1V (s)llo) 1Y (5) | ) ds

V(t) = Sa(t)V(0) + fy Sa(t = s)O(IIV(s)lls x Y (5)lle. )ds
It follows that Thyax(7,9) = o0



Consider the combustion system of two equations in R,

Ue(t, x) = A U(t, x) + V(t,x)g(U(t,x)), U,V €R" n>2
Vi(t,x) = A V(t,x) — kV(t,x)g(U(t,x)), x € RY,
(25)
where
g(U) = (26)

et ifU>0:
0 if U<0,



We consider a general reaction-diffusion system
Ut(t,X) :Axu(t7x)+f(u(t7x))7 (27)

where u € R", x € RY, t >0, f(-) : R” — R" is smooth.

Given the vector e = (1,0, ...,0) € S, we will make a change of
variable z = e - x — ct for some velocity ¢ > 0. Redenoting again
x = (z,x2,...,Xg), We arrive at the equation

ur = Dyu + cuy + f(u), (28)

where A, =92 +02 + -+ 02 =02+ A,.

A traveling wave solution ¢ = ¢(z) for system

ug(t, x) = Axu(t,x) + f(u(t, x)) is a smooth function of z € R
that is a time independent solution of (28) and satisfies

0= 0.0+ c0¢ + f(¢). (29)



Linearizing uy = Ayu + cu; + f(u) about ¢, we obtain the variable
coefficients expression L = Ay + c0; + 0,f ().
We need the spectral information about £ associated with L on

& = HY(RY)" = H*(R; H*(R?™1; C")) = H*(RTH; HX(R; C")),
we will assume k > [¢£] throughout. Thus we decompose £ as
(‘Cu)(z7y) — (Elu(' ,y))(Z) =+ (Ayu(27 ))(y)

where L7 is associated with the one-dimensional differential
variable coefficients expression L1 = 92 + c0, + 9,f(¢) that
depends only on z, and A, = (92, + -+ + 92).



We assume that there exist constant solutions ¢+ € R” of
ur(t, x) = Axu(t, x) + f(u(t, x)) so that f(¢+) = 0 and there
exist constants K > 0 and w_ < 0 < w4 such that
[|6(z) — d—||rn < Ke™@=% for z <0,
[|6(2) — d+]|rn < Ke=“+% for z > 0.
On &f the essential spectrum of L; = 02 + c0, + O,f(p) may
touch the imaginary axis. To fix this, we introduce a class of
weight functions of exponential type. Let o = (a_, g ) € R2. We
call 7, : R — R a weight function of class a if 0 < 7,(z) for all
z € R, the function 7, € Ck3(R), and

va(z) = {e:zz, for large neg.a.tive z, (30)

e“+#  for large positive z.

Following the setting in [GLS], we will always assume that

0<a_<—w- and 0< oy <wsy.



For a fixed weight function vy, let Eo = {U : Ya ® lyk(ra-1yu € &},
with the norm ||ul|o, = ||7aullo- Note that by the definition of &,,
we can represent the weighted space &, by HX(R; H¥(R9~1; C™)).
Here, for a function u = u(z, y) we denote by (Yo ® lyk(rd-1y)u
the function of (z, y) defined by

(Yo ® lyqra-1))u)(2,¥) = 1a(2)u(z,y),  (z,y) €R?



Pass to the weighted space
e

NN
A

Sp(L1, &(R)) Sp(L1,a;€a(R))




If n € Sp(L1,n), and X € Sp(Ay), then n+ X € Sp(L,), where
(Lat)(z,y) = (Lrau(-,¥))(2) + (Byu(z, ))(y).

(L1.aw(z) = nw(z), Byv(y) = Av(y) then u(z,y) = w(z)v(y)

gives Lowz = (L1 ow)v + w(Ayv) = nwv + Awy = (n+ A)wv)

Alm ) lp A

Re A

Sp{L1a; Ea(R)) Sp(£, £a(RY))

e\



There exists a = (a_, a1 ) € R? such that
sup{ReA : XA € Spess(L1,4)} < 0.

The only element of Sp(L1,4) in {A € C:ReX >0} is a
simple eigenvalue at A = 0 with ¢’ being the respective
eigenfunction.

Under the assumption f(u1,0) = (Aug,0) on the nonlinearity,
we linearize uy = Ayu + cu, + f(u) at the left end state (0,0)

and obtain ®
- (L 0u,1(0,0)
L™= < 0 [ ) (31)

LY = A, 4 ¢0, + 0, f1(0,0) = 0 + €0, + A1, (32)



L) = A+ cB, + 8, (0,0) = Dz 4+ cO; + A, (34)
L(2) = AX aF Caz = au2 f2(07 O) (35)

The operator £(1) on " induced by (34) generates a

bounded semigroup, that is, Het[’(l)HB(go) < K for some
K >0andall t >0;

The operator £2) on & induced by (35) satisfies
sup{ReX : A € Sp(£?)} <0,

so that there exist numbers p > 0 and K > 0, for which the
inequality
(2 _
167 || 5(gp) < Ke "

holds for all £ > 0.



We also define the projection operators

(Peu)(z,y) = (Pu(, y))(2), (Pu)(z,y) = (Pu(-, ¥))(2).

e Pl gk my) < Ce™%;
HetﬁwpsHB(ga) < Ce 't
e |5y < C.

Here, E =& NE&y and || - |l = max{|| - ||&, || - ||, }- Also, the

semigroup Sa (t) generated by the linear operator A, for all t > 0
satisfies the following decay estimates with some 8 > 0:

1Sa, (t)ul| px(a-1) < Cllul| g (ma-1y,

|1Sa, (t)ul| gr(ra-1y <
C(l =F t)_(d_l)/4]\u\|L1(Rd_1) aF Ce_BtHUHHk(Rd—l).



We study solutions u of uy = Ay u + cu, + f(u) near ¢ such that
u = ¢+ small. We seek a function v(-) with small v such that

u(z,y) = ¢(z)+small = ¢(z—q(y))+v(z,y), (z,y) € R?. (36)

Substituting u = ¢ + v into uy = Ay u + cu, + f(u) we obtain, as
in [Kapitula], a system of equations

Orv — ¢i78tq = Lv + (df (¢q) — df (¢))v + N(¢g, v)v

(37)
= qu¢,q +(Vyq- qu)qﬁ’;,

use P* and P€ to uncouple (37) we obtain a system of equations:

Orv = Lv+ Fi(v,q), 0:q = Ayq + F2(v, q).



Oev = Lv+ Fi(v,q), 0:q = Ayq + F2(v, q).

Here, Fi(v,q), i = 1,2 defines locally Lipschitz mappings on £ and
Hk(]Rd_l), respectively, and satisfy the estimates:
IF1(v; g)llo <
Cr(lIviiollvlla + lIviiolivallo + llall wellvlla + 1V yqllZ),
1F1(v, @)lla < Ck(IIVllolIvlla + lallaxl Vil + 11VyallF),
|[F2(v, @)k (ra-1) <
C ([IvllolvVlla + llallmlIvlla + IV yallFu),
1F2(v, @)|[ 11 (ra-1) <
C ([Ivllolvla + gl mIVIla + [1VyqllFu)-



Assume k > [ZFL]. There exist a small 6o > 0 and a constant
C > 0 such that for each 0 < § < g there exists 0 < n < § such
that the following is true. Let (v°,q%) € £" x HX(RI~1) be the
initial condition satisfying
B = [1V0]le + 160 s oy + 16l wrs sy < 1 and let
(v(t), q(t)) € E" x HX(RY~1) be the solution to
Orv = Lv + F1(v q), 0rq = Ayq + F2(v, q) with the initial
condition (v°,q%). Then for all t > 0,

(v(t), ( ) is defined in E" x H*(R~1);

Iv(®)lle + [la()][ e < 6;

Iv(t)lla < C(L+ t)~(EFDR2E,;

la(t)l] e < C(L+ )" D/AE,

[Iva(t)llo < CEx;

va(8)llo < C(1+ )@+ D/2E,,



Thank you!!



	Introduction: no formulas, just pictures
	Stable foliations in vicinity of a traveling front for one dimensional reaction diffusion systems
	Planar fronts in multidimensional reaction diffusion systems

