Stability of one-dimensional and multi-dimensional fronts in exponentially weighted norms for a class of reaction diffusion equations

Anna Ghazaryan, Yuri Latushkin, Ronald Schnaubelt, Xinyao Yang

Miami University, University of Missouri, Karlsruhe Institute of Technology, Xi'an Jiaotong-Liverpool University, China

A typical example

Combustion model for a one-dimensional fuel

 $egin{aligned} & U_t = \partial_{xx} U + Vg(U), & U = U(x,t) ext{ temperatura} \ & V_t = \epsilon \partial_{xx} V - \kappa Vg(U), & V = V(x,t) ext{ concentration of unburnt fuel} \ & g(U) = egin{cases} e^{-rac{1}{U}}, & ext{if } U \geq 0 \ 0, & ext{if } U < 0 \end{aligned}$ unit reaction rate, $1 >> \epsilon \geq 0, \ \kappa > 0. \end{aligned}$

 $\epsilon = 0$ when the fuel is solid.

 κ is the exothermicity, the larger κ is the more fuel one has to burn to achieve a given increase of the temperature.

U = 0 background temperature (no reaction).

Traveling combustion front $\phi(\xi) = (U(\xi), V(\xi)), \xi = x - ct, c > 0$ speed of the front moving to the right. Behind the front $(U, V) = (U_{-\infty}, 0)$ (burnt fuel). Ahead of the front $(U, V) = (0, V_{+\infty})$ (concentration of unburnt fuel $V_{+\infty} > 0$). We study one- and multidimensional generalizations of this reaction-diffusion system

Introduction: no formulas, just pictures

Stable foliations in vicinity of a traveling front for one dimensional reaction diffusion systems

Planar fronts in multidimensional reaction diffusion systems

Brief history

We study *stability* of front solutions of nonlinear equations. For *existence* see [Berestycki, Larrouturou, P.L. Lions], [Berestycki, Nirenberg], [Fiedler, Scheel, Vishik], [Fife], [Hamel, Roquejoffre], [Henry], [Haragus, Scheel], [Kapitula, Promislow], [Morita, Ninomiya], [Rabinowitz], [Sandstede], [Volpert, Volpert, Volpert], [Xin] and many others.

Planar fronts are solutions to partial differential equations that move in a given direction with constant speed without changing their shape and are asymptotic to spatially constant steady-state solutions, the end states. Translations of fronts are also fronts. We prove orbital stability of fronts, that is, show that a small perturbation of a front evolves to a translation of the front

 $\mathcal{O} \land \mathcal{O}$

Classical 1-dimensional case

See Bates, Henry, Jones, Pego, Sandstede, Sattinger, Scheel, Volpert, Volpert, Volpert, Weinstein – many many others – classical book by [Volpert³], newer book by [Kapitula/Promislow]) Let Y(t, Y(0)) be the solution to a reaction-diffusion system $Y_t = DY_{xx} + cY_x + R(Y)$ that has a traveling front solution ϕ , that is, $D\phi_{xx} + c\phi_x + R(\phi) = 0$.

Decompose: Solution = component in the direction of the front + normal to the front,

 $Y(t, Y(0)) = \phi(\cdot - q(t)) + v(t)$, where Y(0) is close to ϕ . Linearize at the wave ϕ , let \mathcal{L}_1 be the 1-dimensional linear operator obtained by the linearization. Since ϕ_x satisfies $\mathcal{L}_1\phi_x = 0$, the spectrum of \mathcal{L}_1 contains 0. Assume 0 is the only unstable spectrum of \mathcal{L}_1 . Let P_s be the projection on the stable part of the spectrum.

$$egin{aligned} \dot{v} &= (\mathcal{L}_1|_{\mathsf{ran}\,P_s})v + \mathit{small}(v,q) \quad \Rightarrow \quad \|v(t)\|_{\mathcal{E}_0} \leq C e^{-
u t} \ \dot{q} &= 0 (\mathsf{the eigenvalue}) + \mathit{small}(v,q) \quad \Rightarrow \quad q(t) o q_* \end{aligned}$$

Classical 1-dimensional case in pictures

 $\operatorname{Sp}(L_1|\operatorname{ran} P_c) = \{0\}, \operatorname{ran} P_c = \operatorname{span}\{\phi'\}$

Conclusion for the classical 1-dimensional case

Orbital Stability: $Y(t, Y(0)) \rightarrow \phi(\cdot - q_*)$.

More complicated 1-dimensional case

Newer work by many including [Ghazaryan/Latushkin/Schecter]

Spectrum is good, nonlinearity is bad, so one needs to pass to the intersection space $\mathcal{E}_0 \cap \mathcal{E}_{\alpha}$, see [GLS]. Then:

$$\|v(t)\|_{\mathcal{E}_{lpha}}\leq Ce^{-
u t}; \|v(t)\|_{\mathcal{E}_{0}}\leq C, q(t)
ightarrow q_{*}.$$

Moreover, in appropriated variables $v = (v_1, v_2)$ with $v_1 \in \mathbb{R}^{n_1}$, $v_2 \in \mathbb{R}^{n_2}$, $n_1 + n_2 = n$, we have $\|v_1(t)\|_{\mathcal{E}_0} \leq C$, $\|v_2(t)\|_{\mathcal{E}_0} \leq Ce^{-\nu t}$.

Our current 1-dimensional work

We prove for each q a stable manifold exists through $\phi(\cdot - q)$.

Multidimensional case (earlier work by many in particular by [Kapitula])

$$Y_t = (\partial_{x_1}^2 + \Delta_y)Y + c\partial_{x_1}Y + R(Y)$$

Decompose: solution = component in the direction of the front + transversal to the front

$$Y(t, Y(0))(x_1, y) = \phi(x_1 - q(t, y)) + v(t, x_1, y),$$

q(t, y) is the drift along the front in $y = (x_2, \ldots, x_d)$.

Linearization \mathcal{L} as in [Kapitula] is given by

$$(\mathcal{L}u)(x_1,y) = (\mathcal{L}_1u(\cdot,y))(x_1) + (\Delta_y u(x_1,\cdot))(y)$$

 $Y_t = (\partial_{x_1}^2 + \Delta_y)Y + c\partial_{x_1}Y + R(Y)$

Algebraic decay in earlier work [Kapitula]

$$\begin{cases} \dot{v} = \mathcal{L}|_{\mathsf{ran}(P_s(x) \otimes l_y)} v + \mathsf{small}(v, q) \\ \dot{q} = \Delta_y q + \mathsf{small}(v, q). \end{cases}$$

$$egin{aligned} \|e^{t\Delta_y}\|_{L^1(\mathbb{R}^{d-1}) o H^k(\mathbb{R}^{d-1})} &\leq rac{C}{(1+t)^{(d-1)/4}}\ &\Rightarrow \|q(t)\|_{H^k(\mathbb{R}^{d-1})} o 0 \ \ ext{algebraically as} \ \ t o\infty\ &\|v(t)\|_{\mathcal{E}_0} o 0 \ \ ext{algebraically as} \ \ t o\infty. \end{aligned}$$

Since the drift along the front fades away

 $\Rightarrow Y(t, Y(0)) \rightarrow \phi$ as $t \rightarrow \infty$ algebraically

A more complicated case (our current work)

Linearization $(\mathcal{L}_{\alpha}u)(x_1, y) = (\mathcal{L}_{1,\alpha}u(\cdot, y))(x_1) + (\Delta_yu(x_1, \cdot))(y)$ in the current work

Spectrum is good, nonlinearity is bad, and we pass to the intersection space $\mathcal{E}_0 \cap \mathcal{E}_{\alpha}$. We prove that

$$egin{aligned} \|v(t)\|_{\mathcal{E}_0} &\leq C \ \|v(t)\|_{\mathcal{E}_lpha} &\leq rac{C}{ ext{poly. of } t} o 0 \ \|q(t)\|_{H^k(\mathbb{R}^{d-1})} &\leq rac{C}{ ext{poly. of } t} o 0 \end{aligned}$$

Moreover, in appropriate variables $v = (v_1, v_2)$,

$$egin{aligned} \|v_1(t)\|_{\mathcal{E}_0} &\leq C; \ \|v_2(t)\|_{\mathcal{E}_lpha} &\leq rac{C}{ ext{poly. of } t} o 0, \end{aligned}$$

as $t \to \infty$.

CHAPTER 1: A class of 1-dimensional reaction diffusion systems

Consider the system of reaction diffusion equations,

$$Y_t(t,x) = D\partial_{xx}Y(t,x) + R(Y(t,x)), \ Y \in \mathbb{R}^n, \ x \in \mathbb{R}, \ t > 0, \ (1)$$

where $D = diag(d_1, \dots, d_n)$ with all $d_i \ge 0$, and the function $R(\cdot)$ is smooth and satisfies some additional special properties listed later. A typical example that we have in mind is the following system from solid combustion for Y = (U, V):

$$\begin{cases} U_t(t,x) = \partial_{xx} U(t,x) + V(t,x) g(U(t,x)), & U, V \in \mathbb{R}, \\ V_t(t,x) = \epsilon \partial_{xx} V(t,x) - \kappa V(t,x) g(U(t,x)), & x \in \mathbb{R}, \end{cases}$$
(2)

where

$$g(U) = \begin{cases} e^{-\frac{1}{U}} & \text{if } U > 0; \\ 0 & \text{if } U \le 0, \end{cases}$$
(3)

Hypotheses

Passing to the moving coordinate frame $\xi = x - ct$ and redenoting ξ again by x, we arrive at the nonlinear equation

$$Y_t = DY_{xx} + cY_x + R(Y), \qquad x \in \mathbb{R}, \ t \ge 0.$$
(4)

Assume that system (4) admits a traveling wave solution $\phi(x)$ that converges to the end states ϕ_{\pm} as $x \to \pm \infty$ exponentially; i.e.,

$$|\phi(x) - \phi_{-}| \le Ce^{-\omega_{-}x}, \qquad x \le 0, |\phi(x) - \phi_{+}| \le Ce^{-\omega_{+}x}, \qquad x \ge 0,$$
 (5)

for some $\omega_{-} < 0 < \omega_{+}$ and C > 0. Without loss of generality, we also assume that $\phi_{-} = 0$.

We study the system on the unweighted space $\mathcal{E}_0 = H^1(\mathbb{R})$ since it is closed under multiplication, and denote the norm on \mathcal{E}_0 by $\|\cdot\|_0$. Let $\alpha = (\alpha_-, \alpha_+) \in \mathbb{R}^2$. We say that $\gamma_\alpha : \mathbb{R} \to \mathbb{R}$ is a weight function of class α if γ_α is C^2 , $\gamma_\alpha(x) > 0$ for all $x \in \mathbb{R}$, and $\gamma_\alpha(x) = e^{\alpha_-x}$ for $x \leq -x_0$ and $\gamma_\alpha(x) = e^{\alpha_+x}$ for $x \geq x_0$ for some $x_0 > 0$. We assume that $0 < \alpha_- < -\omega_-$ and $0 \leq \alpha_+ < \omega_+$, where ω_{\pm} are the exponents that control the decay of ϕ to ϕ_{\pm} . Given such a pair $\alpha = (\alpha_-, \alpha_+)$, we introduce the weighted space $\mathcal{E}_\alpha = \{u : \mathbb{R} \to \mathbb{R}^n : \gamma_\alpha u \in \mathcal{E}_0\}$ with the norm $|u|_\alpha = |\gamma_\alpha u|_0$. The intersection space $\mathcal{E} = \mathcal{E}_0 \cap \mathcal{E}_\alpha$ is endowed with the norm

$$|u|_{\mathcal{E}} = \max\{|u|_0, |u|_{\alpha}\}$$

Example: $\gamma_{\alpha}(x) = e^{\alpha x}$, $\mathcal{E}_{0} = H^{1}(\mathbb{R})$, $\mathcal{E}_{\alpha} = \{u : e^{\alpha x} u \in H^{1}(\mathbb{R})\}$. Isometry $M_{\alpha} : \mathcal{E}_{\alpha} \to \mathcal{E}_{0} : u \mapsto e^{\alpha x} u$. The operator $\partial_{x,\alpha} : u \mapsto u'$ on \mathcal{E}_{α} is similar via $M_{\alpha}\partial_{x,\alpha}M_{\alpha}^{-1} = \partial_{x,0} - \alpha$ to $\partial_{x,0} - \alpha$, where $\partial_{x,0} : u \mapsto u'$, because $\partial_{x,\alpha}M_{\alpha}^{-1}u = (e^{-\alpha x}u)' = e^{-\alpha x}(u' - \alpha)$. We further assume that the nonlinear term R in

 $Y_t = DY_{xx} + cY_x + R(Y)$ has the following product structure: The nonlinear term R belongs to $C^4(\mathbb{R}^n, \mathbb{R}^n)$. In appropriate variables $Y = (U, V)^T$ with $U \in \mathbb{R}^{n_1}$, $V \in \mathbb{R}^{n_2}$ and $n_1 + n_2 = n$, we have

$$R(U,0) = (A_1U,0)$$
(6)

for a constant $n_1 \times n_1$ matrix A_1 . In other words, we suppose that

$$R(U,V) = egin{pmatrix} A_1U+R_1(U,V)\ R_2(U,V) \end{pmatrix} = egin{pmatrix} A_1U+ ilde{R}_1(U,V)V\ ilde{R}_2(U,V)V \end{pmatrix},$$

where the maps R_j belong to $C^3(\mathbb{R}^n, \mathbb{R}^{n_j})$ and satisfy $R_j(U, 0) = 0$ for $j \in \{1, 2\}$ and $U \in \mathbb{R}^{n_1}$. Note that condition (6) yields $R(0, 0) = R(\phi_-) = 0$. We also split

$$D = \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}, \quad D_1 = diag(d_1, \ldots, d_{n_1}), \quad D_2 = diag(d_{n_1+1}, \ldots, d_n)$$

Let $q \in \mathbb{R}$. We write $\phi_q(x) = \phi(x - q)$ for the shifted wave. Linearizing $Y_t = DY_{xx} + cY_x + R(Y)$ at ϕ_q , we arrive at

$$Y_t = L_q Y + F_q(Y)$$
, where $L_q Y = DY_{xx} + cY_x + \partial_Y R(\phi_q)Y$. (7)

Here, the nonlinear term $F_q : \mathbb{R}^n \to \mathbb{R}^n$ is written as

$$F_q(Y) = \int_0^1 \left(\partial_Y R(\phi_q + tY) - \partial_Y R(\phi_q) \right) Y dt.$$
(8)

The linearization of $Y_t = DY_{xx} + cY_x + R(Y)$ at $\phi_- = (0,0)^T$ is

 $Y_t = L^-Y + G(Y)$, where $L^-Y = DY_{xx} + cY_x + \partial_Y R(0)Y$ (9)

and $G : \mathbb{R}^n \to \mathbb{R}^n$; $G(Y) = R(Y) - \partial_Y R(0)Y$.

Linearization $L_q Y = DY_{xx} + cY_x + \partial_Y R(\phi_q) Y$ We will impose conditions on L_0 at q = 0; i.e., on the linearization at the original traveling wave ϕ . We further consider L_q for $|q| \le q_0$ with some $q_0 > 0$. Linearization $L^-Y = DY_{xx} + cY_x + \partial_Y R(0)Y$

$$\partial_{Y} R(0,0) = \begin{pmatrix} A_{1} & \partial_{V} R_{1}(0,0) \\ 0 & \partial_{V} R_{2}(0,0) \end{pmatrix}, \qquad L^{-} = \begin{pmatrix} L^{(1)} & \partial_{V} R_{1}(0,0) \\ 0 & L^{(2)} \end{pmatrix}$$
(10)

with the differential expressions

$$L^{(1)}U = D_1U_{xx} + cU_x + A_1U,$$

$$L^{(2)}V = D_2V_{xx} + cV_x + \partial_V R_2(0,0)V.$$

Assumptions on linearization $L_q Y = DY_{xx} + cY_x + \partial_Y R(\phi_q)Y$: We assume that there exists $\alpha = (\alpha_-, \alpha_+) \in \mathbb{R}^2$ such that

- (a) $\sup\{\operatorname{Re}\lambda : \lambda \in \operatorname{Sp}_{ess}(\mathcal{L}_{0,\alpha})\} < 0$ for the differential operator on \mathcal{E}_{α} generated by L_0 .
- (b) The only element of Sp(L_{0,α}) in {λ ∈ C : Reλ ≥ 0} is a simple eigenvalue at λ = 0 with φ' being the respective eigenfunction.

We let P_q^c denote the spectral projection for $\mathcal{L}_{q,\alpha}$ in \mathcal{E}_{α} onto ker $\mathcal{L}_{q,\alpha} = \operatorname{span}\{\phi'_q\}$ and the complementary projection by $P_q^s = I - P_q^c$. Denote by $\{T_q(t)\}_{t\geq 0}$ the semigroup generates by \mathcal{L}_q , this implies $\|T_q(t)P_q^s\|_{\mathcal{B}(\mathcal{E}_{\alpha})} \leq Ce^{-\nu t}$.

Assumptions on linearization

$$L^{-}Y = DY_{xx} + cY_{x} + \partial_{Y}R(0)Y = \begin{pmatrix} L^{(1)} & \partial_{V}R_{1}(0,0) \\ 0 & L^{(2)} \end{pmatrix}Y:$$

Denote by $\{S_1(t)\}_{t\geq 0}$, $\{S_2(t)\}_{t\geq 0}$ the semigroups generated by $L^{(1)}U = D_1U_{xx} + cU_x + A_1U$, $L^{(2)}V = D_2V_{xx} + cV_x + \partial_VR_2(0,0)V$ on \mathcal{E}_0 for the decomposition Y = (V, U) and assume the following: The strongly continuous semigroup $\{S_1(t)\}_{t\geq 0}$ is bounded and the semigroup $\{S_2(t)\}_{t\geq 0}$ is uniformly exponentially stable on \mathcal{E}_0 :

$$\|S_1(t)\|_{\mathcal{B}(\mathcal{E}_0)} \leq C, \qquad \|S_2(t)\|_{\mathcal{B}(\mathcal{E}_0)} \leq C e^{-
ho t}$$

for some $\rho > 0$ and all $t \ge 0$. This also implies (a lemma):

$$\begin{aligned} \|S(t)\|_{\mathcal{B}(\mathcal{E}_0)} &\leq C, \text{ for all } t \geq 0. \end{aligned} \tag{11} \\ \sup_{\|q\| \leq q_0} \sup_{t \geq 0} \|\mathcal{T}_q(t)\|_{\mathcal{B}(\mathcal{E})} < \infty,. \end{aligned} \tag{12}$$

Nonlinearity

$$\begin{array}{l} Y_t = L_q Y + F_q(Y), \ F_q(Y) = \int_0^1 \left(\partial_Y R(\phi_q + tY) - \partial_Y R(\phi_q) \right) \ Y dt. \\ \text{Assume that } \alpha = (\alpha_-, \alpha_+) \ \text{satisfies } 0 < \alpha_- < -\omega_- \ \text{and} \\ 0 \leq \alpha_+ < \omega_+, \ \text{and that the nonlinearity} \ R \in C^4(\mathbb{R}^n, \mathbb{R}^n) \ \text{fulfills} \\ R(U,0) = (A_1 U, 0). \ \text{Let} \ \delta_1 > 0 \ \text{and choose a radius} \ \delta \in (0, \delta_1]. \\ \text{Then for all functions} \ y = (u, v) \ \text{and} \ \bar{y} = (\bar{u}, \bar{v}) \ \text{from} \ \mathcal{E} \ \text{with} \\ |y|_{\mathcal{E}}, |\bar{y}|_{\mathcal{E}} \leq \delta \ \text{the estimates} \end{array}$$

$$|F_q(y)|_0 \le C|y|_0 (|y|_{\alpha} + |v|_0), \tag{13}$$

$$|F_q(y)|_{\alpha} \le C|y|_0 |y|_{\alpha}, \tag{14}$$

$$|F_q(y) - F_q(\bar{y})|_0 \le C\left(|y - \bar{y}|_0 \left(|y|_\alpha\right)$$
(15)

$$+ |ar{y}|_{lpha}) + |y - ar{y}|_0 |v|_0 + |ar{y}|_0 |v - ar{v}|_0), \quad (16)$$

$$|F_q(y) - F_q(\bar{y})|_{\alpha} \le |y - \bar{y}|_{\alpha} \left(|y|_0 + |\bar{y}|_0 \right)$$
(17)

are true, where $C = C(\delta_1, q_0)$ and $|q| \leq q_0$.

The Lyapunov-Perron operator

We next establish basic properties of the Lyapunov-Perron operator $\Phi_q(y, z_0)$ for $Y_t = L_q Y + F_q(Y)$ defined by

$$\Phi_{q}(y,z_{0})(t) = T_{q}(t)P_{q}^{s}z_{0} + \int_{0}^{t}T_{q}(t-\tau)P_{q}^{s}F_{q}(y(\tau))d\tau - \int_{t}^{\infty}P_{q}^{c}F_{q}(y(\tau))d\tau,$$
(18)

where $|q| \leq q_0$ and $z_0 \in \mathcal{E}_0 \cap \mathcal{E}_lpha = \mathcal{E}$ satisfies

 $|z_0|_{\mathcal{E}} = \max\{|z_0|_0, |z_0|_\alpha\} \le \delta_0, \quad \text{for some} \quad \delta_0 > 0.$ (19) For continuous $y = (u, v) : \mathbb{R} \to \mathcal{E}_{\mathcal{E}} = \mathcal{E}_0 \cap \mathcal{E}_\alpha$ we define the norms

$$\|y\|_{\omega,\alpha} = \sup_{t \ge 0} e^{\omega t} |y(t)|_{\alpha}, \ \|y\|_{0,0} = \sup_{t \ge 0} |y(t)|_{0}, \ \|v\|_{\omega,0} = \sup_{t \ge 0} e^{\omega t} |v(t)|_{0},$$

Here we have to modify these exponents such that $0 < \omega < \rho < \nu$. Let $\delta > 0$. Then $\mathbb{B}_{\delta}(\|\cdot\|)$ is the set of continuous functions $y : \mathbb{R} \to \mathcal{E}_0 \cap \mathcal{E}_{\alpha}$ such that

$$\|y\| := \max(\|y\|_{\omega,\alpha}, \|y\|_{0,0}, \|v\|_{\omega,0}) \le \delta.$$
(20)

Properties of Lyapunov-Perron operator

$$\Phi_{q}(y, z_{0})(t) = T_{q}(t)P_{q}^{s}z_{0} + \int_{0}^{t} T_{q}(t-\tau)P_{q}^{s}F_{q}(y(\tau))d\tau - \int_{t}^{\infty}P_{q}^{c}F_{q}(y(\tau))d\tau, \quad Y_{t} = L_{q}Y + F_{q}(Y).$$
(21)

 $(\mathcal{L}_q \text{ generates } \{T_q(t)\}, \ker(\mathcal{L}_q) = \operatorname{ran} P_q^c \text{ thus } T_q(t-\tau)P_q^c = P_q^c)$ Take $q_0 > 0$. Let $\delta > 0$ and $\delta_0 = \delta_0(\delta) > 0$ be small enough. For each $z_0 \in \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}})$ the Lyapunov-Perron operator $y \mapsto \Phi_q(y, z_0)$ leaves $\mathbb{B}_{\delta}(||\cdot||)$ invariant and is a strict contraction on this ball for all $|q| \leq q_0$. Moreover, for the norm $||\cdot||$ defined in (20) one has

$$\|\Phi_q(y, z_0) - \Phi_q(\bar{y}, \bar{z}_0)\| \le C |z_0 - \bar{z}_0|_{\mathcal{E}} + C\delta \|y - \bar{y}\|$$
(22)

for some C > 0 and all $z_0, \overline{z}_0 \in \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}}), y, \overline{y} \in \mathbb{B}_{\delta}(||\cdot||)$, and $|q| \leq q_0$.

Stable manifold

We will now foliate a small neighborhood of ϕ by stable manifolds \mathcal{M}_{q}^{s} going through ϕ_{q} .

Stable manifold

For a small $q_0 > 0$ and each $q \in [-q_0, q_0]$, we now construct a function $\mathbf{m}_q : \operatorname{ran}(P_q^s) \to P_q^c$ whose graph contains ϕ_q and it is a stable manifold \mathcal{M}_q^s for the system $Y_t = DY_{xx} + cY_x + R(Y)$. We further prove that the sets \mathcal{M}_q^s satisfy the standard properties of stable manifolds and that they foliate a small neighborbood of ϕ . Let $\delta, \delta_0 > 0$ be sufficiently small and $q_0 > 0$. Take $|q| \le q_0$ and $z_0 \in \operatorname{ran}(P_q^s) \cap \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}})$. There exists a unique function $y_{z_0}^q : \mathbb{R}_+ \to \mathcal{E}$ which belongs to $\mathbb{B}_{\delta}(||\cdot||)$ and is a fixed point of the Lyapunov-Perron operator $\Phi_q(\cdot, z_0)$; that is, for $t \ge 0$,

$$egin{aligned} y_{z_0}^q(t) &= T_q(t) z_0 + \int_0^t T_q(t- au) P_q^s F_q(y_{z_0}^q(au)) d au - \int_t^\infty P_q^c F_q(y_{z_0}^q(au)) d au \ &= T_q(t) ig[z_0 - \int_0^\infty P_q^c F_q(y_{z_0}^q(au)) d au ig] + \int_0^t T_q(t- au) F_q(y_{z_0}^q(au)) d au. \end{aligned}$$

We define the function $\mathbf{m}_q : \operatorname{ran}(P^s_q) \cap \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}}) \to \operatorname{ran}(P^c_q)$ by

$$\mathbf{m}_q(z_0) = -\int_0^\infty P_q^c F_q(y_{z_0}^q(\tau)) d\tau.$$
(23)

The fixed point $y = y_{z_0}^q$ of the Lyapunov-Perron operator contained in $\mathbb{B}_{\delta}(\|\cdot\|)$ satisfies $e^{\omega t}|y(t)|_{\alpha} \leq \delta$, $|y(t)|_0 \leq \delta$ and the equation

$$y(t) = T_q(t)y(0) + \int_0^t T_q(t-\tau)F_q(y(\tau))d\tau, \qquad t \ge 0.$$
 (24)

For a number $\eta > 0$ to be fixed below, the stable manifold \mathcal{M}_q^s is then defined as the graph of $\mathbf{m}_q(\cdot)$ shifted to ϕ_q by

$$\mathcal{M}_q^s = \{\phi_q + z_0 + \mathbf{m}_q(z_0) : z_0 \in \operatorname{ran}(P_q^s) \cap \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}})\} \cap (\phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}})),$$

where $|q| \leq q_0$ and $\phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}})$ is the closed ball in $\mathcal{E} = \mathcal{E}_{\alpha} \cap \mathcal{E}_0$ with radius η and centered at the original traveling wave ϕ . Theorem

Let $q_0, \delta, \delta_0, \eta > 0$ be sufficiently small, $|q| \le q_0$, and $0 < \omega < \rho < \nu$. Then the ball $\phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}})$ is foliated by the stable manifolds \mathcal{M}_q^s for the nonlinear equation $Y_t = DY_{xx} + cY_x + R(Y)$ and the following assertions hold.

- (i) Each M^s_q is a Lipschitz manifold in E. If Y(0) ∈ M^s_q and the mild solution Y(t; Y(0)) of Y_t = DY_{xx} + cY_x + R(Y) belongs to φ + B_η(| · |_E) for some t ≥ 0, then Y(t; Y(0)) is contained in M^s_q.
- (ii) For each $Y(0) \in \mathcal{M}_q^s$ there exists a solution Y(t; Y(0)) of $Y_t = DY_{xx} + cY_x + R(Y)$ which exists for all $t \ge 0$ and satisfies $|Y(t; Y(0)) - \phi_q|_{\mathcal{E}} \le \delta$ as well as (a) $|Y(t; Y(0)) - \phi_q|_{\alpha} \le Ce^{-\omega t} |Y(0) - \phi_q|_{\mathcal{E}}$, (b) $|\pi_1(Y(t; Y(0)) - \phi_q) - U_q|_0 \le C |Y(0) - \phi_q|_{\mathcal{E}}$, (c) $|\pi_2(Y(t; Y(0)) - \phi_q) - V_q|_0 \le Ce^{-\omega t} |Y(0) - \phi_q|_{\mathcal{E}}$ for all $t \ge 0$. Here, $\phi_q = (U_q, V_q) = \phi(\cdot - q)$ is the shifted traveling wave, $\pi_1 : Y = (U, V) \rightarrow U$, and $\pi_2 : Y = (U, V) \rightarrow V$.

(Continued)

Theorem

- (iii) If Y(t; Y(0)), $t \ge 0$, is a mild solution of $Y_t = DY_{xx} + cY_x + R(Y)$ with $Y(0) \in \phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}})$ that satisfies properties (a)–(c) in item (ii), then Y(0) belongs to \mathcal{M}_q^s .
- (iv) For $q \neq \bar{q}$, we have $\mathcal{M}_q^s \cap \mathcal{M}_{\bar{q}}^s = \emptyset$. Moreover, $\phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}}) = \bigcup_{|q| \leq q_0} \mathcal{M}_q^s$.
- (v) The map $[-q_0, q_0] \rightarrow \operatorname{ran}(P_q^c)$; $q \mapsto \mathbf{m}_q(P_q^s z_0)$, is Lipschitz for each $z_0 \in \mathbb{B}_{\delta_0}(|\cdot|_{\mathcal{E}})$.

For each $Y(0) \in \phi + \mathbb{B}_{\eta}(|\cdot|_{\mathcal{E}})$ there exists exactly one shift $q \in [-q_0, q_0]$ such that $Y(0) \in \mathcal{M}_a^s$.

The stability result: the idea of the proof, no formulas

We show that $||Y(t)||_{\mathcal{E}_{\alpha}} \exp \operatorname{decay}, ||Y(t)||_{\mathcal{E}_{0}}$ bounded for $Y_{t} = DY_{xx} + cY_{x} + R(Y), Y = (U, V)$. As P^{c} is one dimensional thus easy, consider $P^{s}Y$. Use bootstrap: $0 < \gamma < \delta$ if $||Y(0)||_{\mathcal{E}} \leq \gamma$ then $||Y(t)||_{\mathcal{E}} \leq \delta$ for all $t < T_{\max}(\gamma, \delta) \leq \infty$. 1) As long as $||Y(t)||_{\mathcal{E}_{0}}$ is small, $||Y(t)||_{\mathcal{E}_{\alpha}}$ exp decay by Gronwall's because $T(t)P^{s}$ exp decay in $\mathcal{B}(\mathcal{E}_{\alpha})$,

$$P^{\mathrm{s}}Y(t) = T(t)P^{\mathrm{s}}Y(0) + \int_0^t T(t-s)P^{\mathrm{s}}O(\|Y(s)\|_{\mathcal{E}_0} imes \|Y(s)\|_{\mathcal{E}_\alpha})ds$$

2) As long as $||Y(t)||_{\mathcal{E}_{\alpha}}$ exp decay, $||Y(t)||_{\mathcal{E}_{0}}$ is small by Gronwall's because $S_{1}(t)P^{s}$ is bounded and $S_{2}(t)P^{s}$ exp decay in $\mathcal{B}(\mathcal{E}_{0})$,

$$U(t) = S_1(t)U(0) + \int_0^t S_1(t-s)O((||U(s)||_{\mathcal{E}_0} + ||V(s)||_{\mathcal{E}_0}) \times ||Y(s)||_{\mathcal{E}_\alpha})ds$$

$$V(t) = S_2(t)V(0) + \int_0^t S_2(t-s)O(||V(s)||_{\mathcal{E}_0} \times ||Y(s)||_{\mathcal{E}_\alpha})ds$$

It follows that $T_{\max}(\gamma, \delta) = \infty$

Chapter Two: Multidimensional model case

Consider the combustion system of two equations in \mathbb{R} ,

$$\begin{cases} U_t(t,x) = \Delta_x U(t,x) + V(t,x)g(U(t,x)), \ U, V \in \mathbb{R}^n, \ n \ge 2\\ V_t(t,x) = \Delta_x V(t,x) - \kappa V(t,x)g(U(t,x)), \ x \in \mathbb{R}^d, \end{cases}$$
(25)

where

$$g(U) = \begin{cases} e^{-\frac{1}{U}} & \text{if } U > 0; \\ 0 & \text{if } U \le 0, \end{cases}$$
(26)

Multidimensional stability of a planar front

We consider a general reaction-diffusion system

$$u_t(t,x) = \Delta_x u(t,x) + f(u(t,x)), \qquad (27)$$

where $u \in \mathbb{R}^n$, $x \in \mathbb{R}^d$, $t \ge 0$, $f(\cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is smooth. Given the vector $e = (1, 0, ..., 0) \in \mathbb{S}^d$, we will make a change of variable $z = e \cdot x - ct$ for some velocity c > 0. Redenoting again $x = (z, x_2, ..., x_d)$, we arrive at the equation

$$u_t = \Delta_x u + c u_z + f(u), \qquad (28)$$

where $\Delta_x = \partial_z^2 + \partial_{x_2}^2 + \dots + \partial_{x_n}^2 = \partial_z^2 + \Delta_y$. A traveling wave solution $\phi = \phi(z)$ for system $u_t(t, x) = \Delta_x u(t, x) + f(u(t, x))$ is a smooth function of $z \in \mathbb{R}$ that is a time independent solution of (28) and satisfies

$$0 = \partial_{zz}\phi + c\partial_z\phi + f(\phi).$$
⁽²⁹⁾

Linearizing $u_t = \Delta_x u + cu_z + f(u)$ about ϕ , we obtain the variable coefficients expression $L = \Delta_x + c\partial_z + \partial_u f(\phi)$.

We need the spectral information about \mathcal{L} associated with L on

$$\mathcal{E}_0 = H^k(\mathbb{R}^d)^n = H^k(\mathbb{R}; H^k(\mathbb{R}^{d-1}; \mathbb{C}^n)) = H^k(\mathbb{R}^{d-1}; H^k(\mathbb{R}; \mathbb{C}^n)),$$

we will assume $k \ge \left[\frac{d+1}{2}\right]$ throughout. Thus we decompose \mathcal{L} as

$$(\mathcal{L}u)(z,y) = (\mathcal{L}_1u(\cdot,y))(z) + (\Delta_yu(z,\cdot))(y)$$

where \mathcal{L}_1 is associated with the one-dimensional differential variable coefficients expression $L_1 = \partial_z^2 + c\partial_z + \partial_u f(\phi)$ that depends only on z, and $\Delta_y = (\partial_{x_2}^2 + \cdots + \partial_{x_d}^2)$.

We assume that there exist constant solutions
$$\phi_{\pm} \in \mathbb{R}^n$$
 of
 $u_t(t,x) = \Delta_x u(t,x) + f(u(t,x))$ so that $f(\phi_{\pm}) = 0$ and there
exist constants $K > 0$ and $\omega_- < 0 < \omega_+$ such that
 $||\phi(z) - \phi_-||_{\mathbb{R}^n} \le K e^{-\omega_- z}$ for $z \le 0$,
 $||\phi(z) - \phi_+||_{\mathbb{R}^n} \le K e^{-\omega_+ z}$ for $z \ge 0$.
On \mathcal{E}_0^n the essential spectrum of $L_1 = \partial_z^2 + c\partial_z + \partial_u f(\phi)$ may
touch the imaginary axis. To fix this, we introduce a class of
weight functions of exponential type. Let $\alpha = (\alpha_-, \alpha_+) \in \mathbb{R}^2$. We
call $\gamma_\alpha : \mathbb{R} \to \mathbb{R}$ a weight function of class α if $0 < \gamma_\alpha(z)$ for all
 $z \in \mathbb{R}$, the function $\gamma_\alpha \in C^{k+3}(\mathbb{R})$, and

$$\gamma_{\alpha}(z) = \begin{cases} e^{\alpha_{-}z} , \text{ for large negative } z, \\ e^{\alpha_{+}z} , \text{ for large positive } z. \end{cases}$$
(30)

Following the setting in [GLS], we will always assume that

$$0 < \alpha_{-} < -\omega_{-}$$
 and $0 \le \alpha_{+} < \omega_{+}$.

For a fixed weight function γ_{α} , let $\mathcal{E}_{\alpha} = \{u : \gamma_{\alpha} \otimes I_{H^{k}(\mathbb{R}^{d-1})} u \in \mathcal{E}_{0}\}$, with the norm $||u||_{\alpha} = ||\gamma_{\alpha}u||_{0}$. Note that by the definition of \mathcal{E}_{α} , we can represent the weighted space \mathcal{E}_{α} by $H^{k}_{\alpha}(\mathbb{R}; H^{k}(\mathbb{R}^{d-1}; \mathbb{C}^{n}))$. Here, for a function u = u(z, y) we denote by $(\gamma_{\alpha} \otimes I_{H^{k}(\mathbb{R}^{d-1})})u$ the function of (z, y) defined by

$$((\gamma_{\alpha}\otimes I_{H^{k}(\mathbb{R}^{d-1})})u)(z,y)=\gamma_{\alpha}(z)u(z,y), \qquad (z,y)\in\mathbb{R}^{d}$$

If
$$\eta \in \text{Sp}(\mathcal{L}_{1,\alpha})$$
, and $\lambda \in \text{Sp}(\Delta_y)$, then $\eta + \lambda \in \text{Sp}(\mathcal{L}_\alpha)$, where
 $(\mathcal{L}_\alpha u)(z, y) = (\mathcal{L}_{1,\alpha} u(\cdot, y))(z) + (\Delta_y u(z, \cdot))(y).$
 $(\mathcal{L}_{1,\alpha} w(z) \approx \eta w(z), \Delta_y v(y) \approx \lambda v(y)$ then $u(z, y) = w(z)v(y)$
gives $\mathcal{L}_\alpha wz = (\mathcal{L}_{1,\alpha} w)v + w(\Delta_y v) \approx \eta wv + \lambda wv = (\eta + \lambda)wv)$

Hypotheses

There exists $\alpha = (\alpha_-, \alpha_+) \in \mathbb{R}^2$ such that

(a)
$$\sup\{\operatorname{Re}\lambda:\lambda\in\operatorname{Sp}_{ess}(\mathcal{L}_{1,\alpha})\}<0.$$

- (b) The only element of Sp(L_{1,α}) in {λ ∈ C : Reλ ≥ 0} is a simple eigenvalue at λ = 0 with φ' being the respective eigenfunction.
- (c) Under the assumption $f(u_1, 0) = (Au_1, 0)$ on the nonlinearity, we linearize $u_t = \Delta_x u + cu_z + f(u)$ at the left end state (0, 0) and obtain

$$L^{-} = \begin{pmatrix} L^{(1)} & \partial_{\nu_2} f_1(0,0) \\ 0 & L^{(2)} \end{pmatrix}$$
(31)

$$L^{(1)} = \Delta_x + c\partial_z + \partial_{u_1} f_1(0,0) = \partial_{zz} + c\partial_z + A_1, \qquad (32)$$

$$L^{(2)} = \Delta_x + c\partial_z + \partial_{u_2} f_2(0,0).$$
(33)

Hypotheses

$$L^{(1)} = \Delta_x + c\partial_z + \partial_{u_1}f_1(0,0) = \partial_{zz} + c\partial_z + A_1, \qquad (34)$$
$$L^{(2)} = \Delta_x + c\partial_z + \partial_{u_2}f_2(0,0). \qquad (35)$$

- (1) The operator $\mathcal{L}^{(1)}$ on $\mathcal{E}_0^{n_1}$ induced by (34) generates a bounded semigroup, that is, $\|e^{t\mathcal{L}^{(1)}}\|_{\mathcal{B}(\mathcal{E}_0)} \leq K$ for some K > 0 and all $t \geq 0$;
- (2) The operator $\mathcal{L}^{(2)}$ on \mathcal{E}_0 induced by (35) satisfies

$$\sup{\operatorname{Re}\lambda : \lambda \in \operatorname{Sp}(\mathcal{L}^{(2)})} < 0,$$

so that there exist numbers $\rho>0$ and K>0, for which the inequality

$$\|e^{t\mathcal{L}^{(2)}}\|_{\mathcal{B}(\mathcal{E}_0)} \leq Ke^{-
ho t}$$

holds for all $t \ge 0$.

We also define the projection operators

 $(\mathcal{P}^{c}u)(z,y) = (\mathcal{P}^{c}u(\cdot, y))(z), \quad (\mathcal{P}^{s}u)(z,y) = (\mathcal{P}^{s}u(\cdot, y))(z).$

$$\begin{split} \| e^{t\mathcal{L}_{1,\alpha}} P^{s} \|_{\mathcal{B}(H^{k}_{\alpha}(\mathbb{R}))} &\leq C e^{-\nu t}; \\ \| e^{t\mathcal{L}_{\alpha}} \mathcal{P}^{s} \|_{\mathcal{B}(\mathcal{E}_{\alpha})} &\leq C e^{-\nu t}; \\ \| e^{t\mathcal{L}_{\mathcal{E}}} \|_{\mathcal{B}(\mathcal{E})} &\leq C. \end{split}$$

Here, $\mathcal{E} = \mathcal{E}_0 \cap \mathcal{E}_\alpha$ and $\|\cdot\|_{\mathcal{E}} = \max\{\|\cdot\|_{\mathcal{E}_0}, \|\cdot\|_{\mathcal{E}_\alpha}\}$. Also, the semigroup $S_{\Delta_y}(t)$ generated by the linear operator Δ_y for all $t \ge 0$ satisfies the following decay estimates with some $\beta > 0$:

(a) $||S_{\Delta_y}(t)u||_{H^k(\mathbb{R}^{d-1})} \leq C||u||_{H^k(\mathbb{R}^{d-1})},$

(b)
$$||S_{\Delta_y}(t)u||_{H^k(\mathbb{R}^{d-1})} \le C(1+t)^{-(d-1)/4}||u||_{L^1(\mathbb{R}^{d-1})} + Ce^{-\beta t}||u||_{H^k(\mathbb{R}^{d-1})}$$

We study solutions u of $u_t = \Delta_x u + cu_z + f(u)$ near ϕ such that $u = \phi + small$. We seek a function $v(\cdot)$ with small v^0 such that

$$u(z,y) = \phi(z) + small = \phi(z-q(y)) + v(z,y), \quad (z,y) \in \mathbb{R}^d.$$
 (36)

Substituting $u = \phi_q + v$ into $u_t = \Delta_x u + cu_z + f(u)$ we obtain, as in [Kapitula], a system of equations

$$\partial_t v - \phi'_q \partial_t q = L v + (df(\phi_q) - df(\phi))v + N(\phi_q, v)v - \Delta_y q \phi'_q + (\nabla_y q \cdot \nabla_y q)\phi''_q,$$
(37)

use \mathcal{P}^{s} and \mathcal{P}^{c} to uncouple (37) we obtain a system of equations:

$$\partial_t v = Lv + F_1(v,q), \ \partial_t q = \Delta_y q + F_2(v,q).$$

$$\partial_t v = Lv + F_1(v,q), \ \partial_t q = \Delta_y q + F_2(v,q).$$

Here, $F_i(v, q)$, i = 1, 2 defines locally Lipschitz mappings on \mathcal{E} and $H^k(\mathbb{R}^{d-1})$, respectively, and satisfy the estimates:

- (a) $\|F_1(v,q)\|_0 \le C_{\mathcal{K}}(\|v\|_0 \|v\|_\alpha + \|v\|_0 \|v_2\|_0 + \|q\|_{H^k} \|v\|_\alpha + \|\nabla_y q\|_{H^k}^2),$
- (b) $||F_1(v,q)||_{\alpha} \leq C_{\mathcal{K}} (||v||_0 ||v||_{\alpha} + ||q||_{H^k} ||v||_{\alpha} + ||\nabla_y q||_{H^k}^2),$
- (c) $||F_{2}(v,q)||_{H^{k}(\mathbb{R}^{d-1})} \leq C_{K}(||v||_{0}||v||_{\alpha}+||q||_{H^{k}}||v||_{\alpha}+||\nabla_{y}q||_{H^{k}}^{2}),$
- (d) $||F_2(v,q)||_{L^1(\mathbb{R}^{d-1})} \le C_K(||v||_0||v||_\alpha + ||q||_{H^k}||v||_\alpha + ||\nabla_y q||_{H^k}^2).$

Theorem

Assume $k \ge \left[\frac{d+1}{2}\right]$. There exist a small $\delta_0 > 0$ and a constant C > 0 such that for each $0 < \delta < \delta_0$ there exists $0 < \eta < \delta$ such that the following is true. Let $(v^0, q^0) \in \mathcal{E}^n \times H^k(\mathbb{R}^{d-1})$ be the initial condition satisfying $E_k = ||v^0||_{\mathcal{E}} + ||q^0||_{H^{k+1}(\mathbb{R}^{d-1})} + ||q^0||_{W^{1,1}(\mathbb{R}^{d-1})} \le \eta$ and let $(v(t), q(t)) \in \mathcal{E}^n \times H^k(\mathbb{R}^{d-1})$ be the solution to $\partial_t v = Lv + F_1(v, q), \ \partial_t q = \Delta_y q + F_2(v, q)$ with the initial condition (v^0, q^0) . Then for all t > 0,

- (1) (v(t), q(t)) is defined in $\mathcal{E}^n \times H^k(\mathbb{R}^{d-1})$;
- (2) $||v(t)||_{\mathcal{E}} + ||q(t)||_{H^k} \leq \delta;$
- (3) $||v(t)||_{\alpha} \leq C(1+t)^{-(d+1)/2}E_k;$
- (4) $||q(t)||_{H^k} \leq C(1+t)^{-(d-1)/4}E_k;$
- (5) $||v_1(t)||_0 \leq CE_k$;
- $|(6)|||v_2(t)||_0 \leq C(1+t)^{-(d+1)/2}E_k.$

Thank you!!