Stability of one-dimensional and multi-dimensional fronts in exponentially weighted norms for a class of reaction diffusion equations

Anna Ghazaryan, Yuri Latushkin, Ronald Schnaubelt, Xinyao Yang

Miami University, University of Missouri, Karlsruhe Institute of Technology,
Xi'an Jiaotong-Liverpool University, China

Wus
20w

K
ex $2 x$ Hing mercodiene

A typical example

Combustion model for a one-dimensional fuel

$$
\begin{aligned}
U_{t} & =\partial_{x x} U+V g(U), \quad U=U(x, t) \text { temperatura } \\
V_{t} & =\epsilon \partial_{x x} V-\kappa V g(U), \quad V=V(x, t) \text { concentration of unburnt fuel } \\
g(U) & =\left\{\begin{array}{ll}
e^{-\frac{1}{U}}, & \text { if } U \geq 0 \\
0, & \text { if } U<0
\end{array} \quad \text { unit reaction rate, } 1 \gg \epsilon \geq 0, \kappa>0 .\right.
\end{aligned}
$$

$\epsilon=0$ when the fuel is solid.
κ is the exothermicity, the larger κ is the more fuel one has to burn to achieve a given increase of the temperature.
$U=0$ background temperature (no reaction).
Traveling combustion front $\phi(\xi)=(U(\xi), V(\xi)), \xi=x-c t$, $c>0$ speed of the front moving to the right. Behind the front $(U, V)=\left(U_{-\infty}, 0\right)$ (burnt fuel). Ahead of the front $(U, V)=\left(0, V_{+\infty}\right)$ (concentration of unburnt fuel $\left.V_{+\infty}>0\right)$. We study one- and multidimensional generalizations of this reaction-diffusion system

Overview

Introduction: no formulas, just pictures

Stable foliations in vicinity of a traveling front for one dimensional reaction diffusion systems

Planar fronts in multidimensional reaction diffusion systems

Brief history

We study stability of front solutions of nonlinear equations. For existence see [Berestycki, Larrouturou, P.L. Lions], [Berestycki, Nirenberg], [Fiedler, Scheel, Vishik], [Fife], [Hamel, Roquejoffre], [Henry], [Haragus, Scheel], [Kapitula, Promislow], [Morita, Ninomiya], [Rabinowitz], [Sandstede], [Volpert, Volpert, Volpert], [Xin] and many others.
Planar fronts are solutions to partial differential equations that move in a given direction with constant speed without changing their shape and are asymptotic to spatially constant steady-state solutions, the end states. Translations of fronts are also fronts. We prove orbital stability of fronts, that is, show that a small perturbation of a front evolves to a translation of the front

Classical 1-dimensional case

See Bates, Henry, Jones, Pego, Sandstede, Sattinger, Scheel, Volpert, Volpert, Volpert, Weinstein - many many others classical book by [Volpert ${ }^{3}$], newer book by [Kapitula/Promislow]) Let $Y(t, Y(0))$ be the solution to a reaction-diffusion system $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ that has a traveling front solution ϕ, that is, $D \phi_{x x}+c \phi_{x}+R(\phi)=0$.
Decompose: Solution $=$ component in the direction of the front + normal to the front,
$Y(t, Y(0))=\phi(\cdot-q(t))+v(t)$, where $Y(0)$ is close to ϕ.
Linearize at the wave ϕ, let \mathcal{L}_{1} be the 1-dimensional linear operator obtained by the linearization. Since ϕ_{x} satisfies $\mathcal{L}_{1} \phi_{x}=0$, the spectrum of \mathcal{L}_{1} contains 0 . Assume 0 is the only unstable spectrum of \mathcal{L}_{1}. Let P_{s} be the projection on the stable part of the spectrum.

$$
\left\{\begin{array}{lll}
\dot{v}=\left(\left.\mathcal{L}_{1}\right|_{\text {ran }} P_{s}\right) v+\operatorname{small}(v, q) \quad & \Rightarrow & \|v(t)\|_{\mathcal{E}_{0}} \leq C e^{-\nu t} \\
\dot{q}=0(\text { the eigenvalue })+\operatorname{small}(v, q) & \Rightarrow \quad q(t) \rightarrow q_{*}
\end{array}\right.
$$

Classical 1-dimensional case in pictures

$\operatorname{Sp}\left(L_{1} \mid \operatorname{ran} P_{c}\right)=\{0\}, \operatorname{ran} P_{c}=\operatorname{span}\left\{\phi^{\prime}\right\}$

Conclusion for the classical 1-dimensional case

Orbital Stability: $Y(t, Y(0)) \rightarrow \phi\left(\cdot-q_{*}\right)$.

More complicated 1-dimensional case

Newer work by many including [Ghazaryan/Latushkin/Schecter]

Spectrum is good, nonlinearity is bad, so one needs to pass to the intersection space $\mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$, see [GLS]. Then:

$$
\|v(t)\|_{\mathcal{E}_{\alpha}} \leq C e^{-\nu t} ;\|v(t)\|_{\mathcal{E}_{0}} \leq C, q(t) \rightarrow q_{*}
$$

Moreover, in appropriated variables $v=\left(v_{1}, v_{2}\right)$ with $v_{1} \in \mathbb{R}^{n_{1}}$, $v_{2} \in \mathbb{R}^{n_{2}}, n_{1}+n_{2}=n$, we have $\left\|v_{1}(t)\right\|_{\mathcal{E}_{0}} \leq C,\left\|v_{2}(t)\right\| \mathcal{E}_{0} \leq C e^{-\nu t}$.

Our current 1-dimensional work

We prove for each q a stable manifold exists through $\phi(\cdot-q)$.

Multidimensional case (earlier work by many in particular by [Kapitula])

$$
Y_{t}=\left(\partial_{x_{1}}^{2}+\Delta_{y}\right) Y+c \partial_{x_{1}} Y+R(Y)
$$

Decompose: solution $=$ component in the direction of the front + transversal to the front

$$
Y(t, Y(0))\left(x_{1}, y\right)=\phi\left(x_{1}-q(t, y)\right)+v\left(t, x_{1}, y\right)
$$

$q(t, y)$ is the drift along the front in $y=\left(x_{2}, \ldots, x_{d}\right)$.

Linearization \mathcal{L} as in [Kapitula] is given by

$$
(\mathcal{L} u)\left(x_{1}, y\right)=\left(\mathcal{L}_{1} u(\cdot, y)\right)\left(x_{1}\right)+\left(\Delta_{y} u\left(x_{1}, \cdot\right)\right)(y)
$$

$$
Y_{t}=\left(\partial_{x_{1}}^{2}+\Delta_{y}\right) Y+c \partial_{x_{1}} Y+R(Y)
$$

Algebraic decay in earlier work [Kapitula]

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{v}=\left.\mathcal{L}\right|_{\operatorname{ran}\left(P_{s}(x) \otimes l y\right)} v+\operatorname{small}(v, q) \\
\dot{q}=\Delta_{y} q+\operatorname{small}(v, q) .
\end{array}\right. \\
\left\|e^{t \Delta_{y}}\right\|_{L^{1}\left(\mathbb{R}^{d-1}\right) \rightarrow H^{k}\left(\mathbb{R}^{d-1}\right)} \leq \frac{C}{(1+t)^{(d-1) / 4}} \\
\Rightarrow\|q(t)\|_{H^{k}\left(\mathbb{R}^{d-1}\right)} \rightarrow 0 \quad \text { algebraically as } t \rightarrow \infty \\
\\
\|v(t)\|_{\mathcal{E}_{0}} \rightarrow 0 \quad \text { algebraically as } t \rightarrow \infty .
\end{gathered}
$$

Since the drift along the front fades away

$$
\Rightarrow Y(t, Y(0)) \rightarrow \phi \quad \text { as } \quad t \rightarrow \infty \quad \text { algebraically }
$$

A more complicated case (our current work)

Linearization $\left(\mathcal{L}_{\alpha} u\right)\left(x_{1}, y\right)=\left(\mathcal{L}_{1, \alpha} u(\cdot, y)\right)\left(x_{1}\right)+\left(\Delta_{y} u\left(x_{1}, \cdot\right)\right)(y)$ in the current work

Spectrum is good, nonlinearity is bad, and we pass to the intersection space $\mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$. We prove that

$$
\begin{aligned}
& \|v(t)\|_{\mathcal{E}_{0}} \leq C \\
& \|v(t)\|_{\mathcal{E}_{\alpha}} \leq \frac{C}{\text { poly. of } t} \rightarrow 0 \\
& \|q(t)\|_{H^{k}\left(\mathbb{R}^{d-1}\right)} \leq \frac{C}{\text { poly. of } t} \rightarrow 0
\end{aligned}
$$

Moreover, in appropriate variables $v=\left(v_{1}, v_{2}\right)$,

$$
\begin{aligned}
\left\|v_{1}(t)\right\|_{\mathcal{E}_{0}} & \leq C \\
\left\|v_{2}(t)\right\|_{\mathcal{E}_{\alpha}} & \leq \frac{C}{\text { poly. of } t} \rightarrow 0
\end{aligned}
$$

as $t \rightarrow \infty$.

CHAPTER 1: A class of 1-dimensional reaction diffusion

 systemsConsider the system of reaction diffusion equations,

$$
\begin{equation*}
Y_{t}(t, x)=D \partial_{x x} Y(t, x)+R(Y(t, x)), Y \in \mathbb{R}^{n}, x \in \mathbb{R}, t>0 \tag{1}
\end{equation*}
$$

where $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ with all $d_{i} \geq 0$, and the function $R(\cdot)$ is smooth and satisfies some additional special properties listed later. A typical example that we have in mind is the following system from solid combustion for $Y=(U, V)$:

$$
\left\{\begin{array}{l}
U_{t}(t, x)=\partial_{x x} U(t, x)+V(t, x) g(U(t, x)), U, V \in \mathbb{R} \tag{2}\\
V_{t}(t, x)=\epsilon \partial_{x x} V(t, x)-\kappa V(t, x) g(U(t, x)), x \in \mathbb{R}
\end{array}\right.
$$

where

$$
g(U)= \begin{cases}e^{-\frac{1}{U}} & \text { if } U>0 \tag{3}\\ 0 & \text { if } U \leq 0\end{cases}
$$

Hypotheses

Passing to the moving coordinate frame $\xi=x-c t$ and redenoting ξ again by x, we arrive at the nonlinear equation

$$
\begin{equation*}
Y_{t}=D Y_{x x}+c Y_{x}+R(Y), \quad x \in \mathbb{R}, t \geq 0 \tag{4}
\end{equation*}
$$

Assume that system (4) admits a traveling wave solution $\phi(x)$ that converges to the end states $\phi_{ \pm}$as $x \rightarrow \pm \infty$ exponentially; i.e.,

$$
\begin{array}{ll}
\left|\phi(x)-\phi_{-}\right| \leq C e^{-\omega_{-} x}, & x \leq 0 \\
\left|\phi(x)-\phi_{+}\right| \leq C e^{-\omega_{+} x}, & x \geq 0 \tag{5}
\end{array}
$$

for some $\omega_{-}<0<\omega_{+}$and $C>0$. Without loss of generality, we also assume that $\phi_{-}=0$.

We study the system on the unweighted space $\mathcal{E}_{0}=H^{1}(\mathbb{R})$ since it is closed under multiplication, and denote the norm on \mathcal{E}_{0} by $\|\cdot\|_{0}$. Let $\alpha=\left(\alpha_{-}, \alpha_{+}\right) \in \mathbb{R}^{2}$. We say that $\gamma_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ is a weight function of class α if γ_{α} is $C^{2}, \gamma_{\alpha}(x)>0$ for all $x \in \mathbb{R}$, and $\gamma_{\alpha}(x)=e^{\alpha_{-} x}$ for $x \leq-x_{0}$ and $\gamma_{\alpha}(x)=e^{\alpha_{+} x}$ for $x \geq x_{0}$ for some $x_{0}>0$. We assume that $0<\alpha_{-}<-\omega_{-}$and $0 \leq \alpha_{+}<\omega_{+}$, where $\omega_{ \pm}$are the exponents that control the decay of ϕ to $\phi_{ \pm}$. Given such a pair $\alpha=\left(\alpha_{-}, \alpha_{+}\right)$, we introduce the weighted space $\mathcal{E}_{\alpha}=\left\{u: \mathbb{R} \rightarrow \mathbb{R}^{n}: \gamma_{\alpha} u \in \mathcal{E}_{0}\right\}$ with the norm $|u|_{\alpha}=\left|\gamma_{\alpha} u\right|_{0}$. The intersection space $\mathcal{E}=\mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$ is endowed with the norm

$$
|u|_{\mathcal{E}}=\max \left\{|u|_{0},|u|_{\alpha}\right\}
$$

Example: $\gamma_{\alpha}(x)=e^{\alpha x}, \mathcal{E}_{0}=H^{1}(\mathbb{R}), \mathcal{E}_{\alpha}=\left\{u: e^{\alpha x} u \in H^{1}(\mathbb{R})\right\}$. Isometry $M_{\alpha}: \mathcal{E}_{\alpha} \rightarrow \mathcal{E}_{0}: u \mapsto e^{\alpha x} u$. The operator $\partial_{x, \alpha}: u \mapsto u^{\prime}$ on \mathcal{E}_{α} is similar via $M_{\alpha} \partial_{x, \alpha} M_{\alpha}^{-1}=\partial_{x, 0}-\alpha$ to $\partial_{x, 0}-\alpha$, where $\partial_{x, 0}: u \mapsto u^{\prime}$, because $\partial_{x, \alpha} M_{\alpha}^{-1} u=\left(e^{-\alpha x} u\right)^{\prime}=e^{-\alpha x}\left(u^{\prime}-\alpha\right)$.

We further assume that the nonlinear term R in
$Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ has the following product structure: The nonlinear term R belongs to $C^{4}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. In appropriate variables $Y=(U, V)^{T}$ with $U \in \mathbb{R}^{n_{1}}, V \in \mathbb{R}^{n_{2}}$ and $n_{1}+n_{2}=n$, we have

$$
\begin{equation*}
R(U, 0)=\left(A_{1} U, 0\right) \tag{6}
\end{equation*}
$$

for a constant $n_{1} \times n_{1}$ matrix A_{1}. In other words, we suppose that

$$
R(U, V)=\binom{A_{1} U+R_{1}(U, V)}{R_{2}(U, V)}=\binom{A_{1} U+\tilde{R}_{1}(U, V) V}{\tilde{R}_{2}(U, V) V},
$$

where the maps R_{j} belong to $C^{3}\left(\mathbb{R}^{n}, \mathbb{R}^{n_{j}}\right)$ and satisfy $R_{j}(U, 0)=0$ for $j \in\{1,2\}$ and $U \in \mathbb{R}^{n_{1}}$. Note that condition (6) yields $R(0,0)=R\left(\phi_{-}\right)=0$. We also split
$D=\left(\begin{array}{cc}D_{1} & 0 \\ 0 & D_{2}\end{array}\right), \quad D_{1}=\operatorname{diag}\left(d_{1}, \ldots, d_{n_{1}}\right), \quad D_{2}=\operatorname{diag}\left(d_{n_{1}+1}, \ldots, d_{n}\right)$.

Let $q \in \mathbb{R}$. We write $\phi_{q}(x)=\phi(x-q)$ for the shifted wave. Linearizing $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ at ϕ_{q}, we arrive at

$$
\begin{equation*}
Y_{t}=L_{q} Y+F_{q}(Y), \text { where } L_{q} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R\left(\phi_{q}\right) Y \tag{7}
\end{equation*}
$$

Here, the nonlinear term $F_{q}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is written as

$$
\begin{equation*}
F_{q}(Y)=\int_{0}^{1}\left(\partial_{Y} R\left(\phi_{q}+t Y\right)-\partial_{Y} R\left(\phi_{q}\right)\right) Y d t \tag{8}
\end{equation*}
$$

The linearization of $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ at $\phi_{-}=(0,0)^{T}$ is

$$
\begin{equation*}
Y_{t}=L^{-} Y+G(Y), \text { where } L^{-} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R(0) Y \tag{9}
\end{equation*}
$$

and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; G(Y)=R(Y)-\partial_{Y} R(0) Y$.

Linearization $L_{q} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R\left(\phi_{q}\right) Y$
We will impose conditions on L_{0} at $q=0$; i.e., on the linearization at the original traveling wave ϕ. We further consider L_{q} for $|q| \leq q_{0}$ with some $q_{0}>0$. Linearization $L^{-} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R(0) Y$

$$
\partial_{Y} R(0,0)=\left(\begin{array}{cc}
A_{1} & \partial_{V} R_{1}(0,0) \tag{10}\\
0 & \partial_{V} R_{2}(0,0)
\end{array}\right), \quad L^{-}=\left(\begin{array}{cc}
L^{(1)} & \partial_{V} R_{1}(0,0) \\
0 & L^{(2)}
\end{array}\right)
$$

with the differential expressions

$$
\begin{aligned}
& L^{(1)} U=D_{1} U_{x x}+c U_{x}+A_{1} U \\
& L^{(2)} V=D_{2} V_{x x}+c V_{x}+\partial_{V} R_{2}(0,0) V
\end{aligned}
$$

Assumptions on linearization $L_{q} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R\left(\phi_{q}\right) Y$: We assume that there exists $\alpha=\left(\alpha_{-}, \alpha_{+}\right) \in \mathbb{R}^{2}$ such that
(a) $\sup \left\{\operatorname{Re} \lambda: \lambda \in \operatorname{Sp}_{\text {ess }}\left(\mathcal{L}_{0, \alpha}\right)\right\}<0$ for the differential operator on \mathcal{E}_{α} generated by L_{0}.
(b) The only element of $\operatorname{Sp}\left(\mathcal{L}_{0, \alpha}\right)$ in $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq 0\}$ is a simple eigenvalue at $\lambda=0$ with ϕ^{\prime} being the respective eigenfunction.
We let P_{q}^{c} denote the spectral projection for $\mathcal{L}_{q, \alpha}$ in \mathcal{E}_{α} onto $\operatorname{ker} \mathcal{L}_{q, \alpha}=\operatorname{span}\left\{\phi_{q}^{\prime}\right\}$ and the complementary projection by $P_{q}^{s}=I-P_{q}^{c}$. Denote by $\left\{T_{q}(t)\right\}_{t \geq 0}$ the semigroup generates by \mathcal{L}_{q}, this implies $\left\|T_{q}(t) P_{q}^{s}\right\|_{\mathcal{B}\left(\mathcal{E}_{\alpha}\right)} \leq C e^{-\nu t}$.

Assumptions on linearization

$$
L^{-} Y=D Y_{x x}+c Y_{x}+\partial_{Y} R(0) Y=\left(\begin{array}{cc}
L^{(1)} & \partial_{V} R_{1}(0,0) \\
0 & L^{(2)}
\end{array}\right) Y:
$$

Denote by $\left\{S_{1}(t)\right\}_{t \geq 0},\left\{S_{2}(t)\right\}_{t \geq 0}$ the semigroups generated by $L^{(1)} U=D_{1} U_{x x}+c U_{x}+A_{1} U, L^{(2)} V=D_{2} V_{x x}+c V_{x}+\partial_{V} R_{2}(0,0) V$ on \mathcal{E}_{0} for the decomposition $Y=(V, U)$ and assume the following: The strongly continuous semigroup $\left\{S_{1}(t)\right\}_{t \geq 0}$ is bounded and the semigroup $\left\{S_{2}(t)\right\}_{t \geq 0}$ is uniformly exponentially stable on \mathcal{E}_{0} :

$$
\left\|S_{1}(t)\right\|_{\mathcal{B}\left(\mathcal{E}_{0}\right)} \leq C, \quad\left\|S_{2}(t)\right\|_{\mathcal{B}\left(\mathcal{E}_{0}\right)} \leq C e^{-\rho t}
$$

for some $\rho>0$ and all $t \geq 0$.
This also implies (a lemma):

$$
\begin{align*}
& \|S(t)\|_{\mathcal{B}\left(\mathcal{E}_{0}\right)} \leq C, \text { for all } t \geq 0 \tag{11}\\
& \sup _{|q| \leq q_{0}} \sup _{t \geq 0}\left\|T_{q}(t)\right\|_{\mathcal{B}(\mathcal{E})}<\infty, \tag{12}
\end{align*}
$$

Nonlinearity

$Y_{t}=L_{q} Y+F_{q}(Y), F_{q}(Y)=\int_{0}^{1}\left(\partial_{Y} R\left(\phi_{q}+t Y\right)-\partial_{Y} R\left(\phi_{q}\right)\right) Y d t$.
Assume that $\alpha=\left(\alpha_{-}, \alpha_{+}\right)$satisfies $0<\alpha_{-}<-\omega_{-}$and $0 \leq \alpha_{+}<\omega_{+}$, and that the nonlinearity $R \in C^{4}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ fulfills $R(U, 0)=\left(A_{1} U, 0\right)$. Let $\delta_{1}>0$ and choose a radius $\delta \in\left(0, \delta_{1}\right]$. Then for all functions $y=(u, v)$ and $\bar{y}=(\bar{u}, \bar{v})$ from \mathcal{E} with $|y|_{\mathcal{E}},|\bar{y}|_{\mathcal{E}} \leq \delta$ the estimates

$$
\begin{align*}
\left|F_{q}(y)\right|_{0} & \leq C|y|_{0}\left(|y|_{\alpha}+|v|_{0}\right) \tag{13}\\
\left|F_{q}(y)\right|_{\alpha} & \leq C|y|_{0}|y|_{\alpha} \tag{14}\\
\left|F_{q}(y)-F_{q}(\bar{y})\right|_{0} & \leq C\left(| y - \overline { y } | _ { 0 } \left(|y|_{\alpha}\right.\right. \tag{15}\\
& \left.\left.+|\bar{y}|_{\alpha}\right)+|y-\bar{y}|_{0}|v|_{0}+|\bar{y}|_{0}|v-\bar{v}|_{0}\right), \tag{16}\\
\left|F_{q}(y)-F_{q}(\bar{y})\right|_{\alpha} & \leq|y-\bar{y}|_{\alpha}\left(|y|_{0}+|\bar{y}|_{0}\right) \tag{17}
\end{align*}
$$

are true, where $C=C\left(\delta_{1}, q_{0}\right)$ and $|q| \leq q_{0}$.

The Lyapunov-Perron operator

We next establish basic properties of the Lyapunov-Perron operator $\Phi_{q}\left(y, z_{0}\right)$ for $Y_{t}=L_{q} Y+F_{q}(Y)$ defined by

$$
\begin{align*}
\Phi_{q}\left(y, z_{0}\right)(t)=T_{q}(t) P_{q}^{\mathrm{s}} z_{0} & +\int_{0}^{t} T_{q}(t-\tau) P_{q}^{\mathrm{s}} F_{q}(y(\tau)) d \tau \tag{18}\\
& -\int_{t}^{\infty} P_{q}^{\mathrm{c}} F_{q}(y(\tau)) d \tau
\end{align*}
$$

where $|q| \leq q_{0}$ and $z_{0} \in \mathcal{E}_{0} \cap \mathcal{E}_{\alpha}=\mathcal{E}$ satisfies

$$
\begin{equation*}
\left|z_{0}\right|_{\mathcal{E}}=\max \left\{\left|z_{0}\right|_{0},\left|z_{0}\right|_{\alpha}\right\} \leq \delta_{0}, \quad \text { for some } \quad \delta_{0}>0 \tag{19}
\end{equation*}
$$

For continuous $y=(u, v): \mathbb{R} \rightarrow \mathcal{E}_{\mathcal{E}}=\mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$ we define the norms

$$
\|y\|_{\omega, \alpha}=\sup _{t \geq 0} e^{\omega t}|y(t)|_{\alpha},\|y\|_{0,0}=\sup _{t \geq 0}|y(t)|_{0},\|v\|_{\omega, 0}=\sup _{t \geq 0} e^{\omega t}|v(t)| 0,
$$

Here we have to modify these exponents such that $0<\omega<\rho<\nu$. Let $\delta>0$. Then $\mathbb{B}_{\delta}(\|\cdot\|)$ is the set of continuous functions $y: \mathbb{R} \rightarrow \mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$ such that

$$
\begin{equation*}
\|y\|:=\max \left(\|y\|_{\omega, \alpha},\|y\|_{0,0},\|v\|_{\omega, 0}\right) \leq \delta . \tag{20}
\end{equation*}
$$

Properties of Lyapunov-Perron operator

$$
\begin{align*}
\Phi_{q}\left(y, z_{0}\right)(t) & =T_{q}(t) P_{q}^{\mathrm{s}} z_{0}+\int_{0}^{t} T_{q}(t-\tau) P_{q}^{\mathrm{s}} F_{q}(y(\tau)) d \tau \\
& -\int_{t}^{\infty} P_{q}^{\mathrm{c}} F_{q}(y(\tau)) d \tau, \quad Y_{t}=L_{q} Y+F_{q}(Y) . \tag{21}
\end{align*}
$$

$\left(\mathcal{L}_{q}\right.$ generates $\left\{T_{q}(t)\right\}, \operatorname{ker}\left(\mathcal{L}_{q}\right)=\operatorname{ran} P_{q}^{c}$ thus $\left.T_{q}(t-\tau) P_{q}^{c}=P_{q}^{\mathrm{c}}\right)$ Take $q_{0}>0$. Let $\delta>0$ and $\delta_{0}=\delta_{0}(\delta)>0$ be small enough. For each $z_{0} \in \mathbb{B}_{\delta_{0}}\left(|\cdot|_{\mathcal{E}}\right)$ the Lyapunov-Perron operator $y \mapsto \Phi_{q}\left(y, z_{0}\right)$ leaves $\mathbb{B}_{\delta}(\|\cdot\|)$ invariant and is a strict contraction on this ball for all $|q| \leq q_{0}$. Moreover, for the norm $\|\cdot\|$ defined in (20) one has

$$
\begin{equation*}
\left\|\Phi_{q}\left(y, z_{0}\right)-\Phi_{q}\left(\bar{y}, \bar{z}_{0}\right)\right\| \leq C\left|z_{0}-\bar{z}_{0}\right|_{\mathcal{E}}+C \delta\|y-\bar{y}\| \tag{22}
\end{equation*}
$$

for some $C>0$ and all $z_{0}, \bar{z}_{0} \in \mathbb{B}_{\delta_{0}}(|\cdot| \mathcal{E}), y, \bar{y} \in \mathbb{B}_{\delta}(\|\cdot\|)$, and $|q| \leq q_{0}$.

Stable manifold

We will now foliate a small neighborhood of ϕ by stable manifolds \mathcal{M}_{q}^{s} going through ϕ_{q}.

Stable manifold

For a small $q_{0}>0$ and each $q \in\left[-q_{0}, q_{0}\right]$, we now construct a function $\mathbf{m}_{q}: \operatorname{ran}\left(P_{q}^{s}\right) \rightarrow P_{q}^{c}$ whose graph contains ϕ_{q} and it is a stable manifold \mathcal{M}_{q}^{s} for the system $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$. We further prove that the sets \mathcal{M}_{q}^{s} satisfy the standard properties of stable manifolds and that they foliate a small neighborbood of ϕ. Let $\delta, \delta_{0}>0$ be sufficiently small and $q_{0}>0$. Take $|q| \leq q_{0}$ and $z_{0} \in \operatorname{ran}\left(P_{q}^{s}\right) \cap \mathbb{B}_{\delta_{0}}(|\cdot| \mathcal{E})$. There exists a unique function $y_{z_{0}}^{q}: \mathbb{R}_{+} \rightarrow \mathcal{E}$ which belongs to $\mathbb{B}_{\delta}(\|\cdot\|)$ and is a fixed point of the Lyapunov-Perron operator $\Phi_{q}\left(\cdot, z_{0}\right)$; that is, for $t \geq 0$,

$$
\begin{aligned}
y_{z_{0}}^{q}(t) & =T_{q}(t) z_{0}+\int_{0}^{t} T_{q}(t-\tau) P_{q}^{s} F_{q}\left(y_{z_{0}}^{q}(\tau)\right) d \tau-\int_{t}^{\infty} P_{q}^{c} F_{q}\left(y_{z_{0}}^{q}(\tau)\right) d \tau \\
& =T_{q}(t)\left[z_{0}-\int_{0}^{\infty} P_{q}^{c} F_{q}\left(y_{z_{0}}^{q}(\tau)\right) d \tau\right]+\int_{0}^{t} T_{q}(t-\tau) F_{q}\left(y_{z_{0}}^{q}(\tau)\right) d \tau .
\end{aligned}
$$

We define the function $\mathbf{m}_{q}: \operatorname{ran}\left(P_{q}^{s}\right) \cap \mathbb{B}_{\delta_{0}}(|\cdot| \mathcal{E}) \rightarrow \operatorname{ran}\left(P_{q}^{c}\right)$ by

$$
\begin{equation*}
\mathbf{m}_{q}\left(z_{0}\right)=-\int_{0}^{\infty} P_{q}^{c} F_{q}\left(y_{z_{0}}^{q}(\tau)\right) d \tau \tag{23}
\end{equation*}
$$

The fixed point $y=y_{z_{0}}^{q}$ of the Lyapunov-Perron operator contained in $\mathbb{B}_{\delta}(\|\cdot\|)$ satisfies $e^{\omega t}|y(t)|_{\alpha} \leq \delta,|y(t)|_{0} \leq \delta$ and the equation

$$
\begin{equation*}
y(t)=T_{q}(t) y(0)+\int_{0}^{t} T_{q}(t-\tau) F_{q}(y(\tau)) d \tau, \quad t \geq 0 \tag{24}
\end{equation*}
$$

For a number $\eta>0$ to be fixed below, the stable manifold \mathcal{M}_{q}^{s} is then defined as the graph of $\mathbf{m}_{q}(\cdot)$ shifted to ϕ_{q} by
$\mathcal{M}_{q}^{s}=\left\{\phi_{q}+z_{0}+\mathbf{m}_{q}\left(z_{0}\right): z_{0} \in \operatorname{ran}\left(P_{q}^{s}\right) \cap \mathbb{B}_{\delta_{0}}(|\cdot| \mathcal{E})\right\} \cap\left(\phi+\mathbb{B}_{\eta}(|\cdot| \mathcal{E})\right)$,
where $|q| \leq q_{0}$ and $\phi+\mathbb{B}_{\eta}(|\cdot| \mathcal{E})$ is the closed ball in $\mathcal{E}=\mathcal{E}_{\alpha} \cap \mathcal{E}_{0}$ with radius η and centered at the original traveling wave ϕ.

Theorem

Let $q_{0}, \delta, \delta_{0}, \eta>0$ be sufficiently small, $|q| \leq q_{0}$, and
$0<\omega<\rho<\nu$. Then the ball $\phi+\mathbb{B}_{\eta}(|\cdot| \mathcal{E})$ is foliated by the stable manifolds \mathcal{M}_{q}^{s} for the nonlinear equation
$Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ and the following assertions hold.
(i) Each \mathcal{M}_{q}^{s} is a Lipschitz manifold in \mathcal{E}. If $Y(0) \in \mathcal{M}_{q}^{s}$ and the mild solution $Y(t ; Y(0))$ of $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ belongs to $\phi+\mathbb{B}_{\eta}\left(|\cdot|_{\mathcal{E}}\right)$ for some $t \geq 0$, then $Y(t ; Y(0))$ is contained in \mathcal{M}_{q}^{s}.
(ii) For each $Y(0) \in \mathcal{M}_{q}^{s}$ there exists a solution $Y(t ; Y(0))$ of $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ which exists for all $t \geq 0$ and satisfies $\left|Y(t ; Y(0))-\phi_{q}\right| \mathcal{E} \leq \delta$ as well as
(a) $\left|Y(t ; Y(0))-\phi_{q}\right|_{\alpha} \leq C e^{-\omega t}\left|Y(0)-\phi_{q}\right|_{\mathcal{E}}$,
(b) $\left|\pi_{1}\left(Y(t ; Y(0))-\phi_{q}\right)-U_{q}\right|_{0} \leq C\left|Y(0)-\phi_{q}\right| \mathcal{E}$,
(c) $\left|\pi_{2}\left(Y(t ; Y(0))-\phi_{q}\right)-V_{q}\right|_{0} \leq C e^{-\omega t}\left|Y(0)-\phi_{q}\right| \mathcal{E}$
for all $t \geq 0$. Here, $\phi_{q}=\left(U_{q}, V_{q}\right)=\phi(\cdot-q)$ is the shifted traveling wave, $\pi_{1}: Y=(U, V) \rightarrow U$, and
$\pi_{2}: Y=(U, V) \rightarrow V$.

(Continued)

Theorem

(iii) If $Y(t ; Y(0)), t \geq 0$, is a mild solution of $Y_{t}=D Y_{x x}+c Y_{x}+R(Y)$ with $Y(0) \in \phi+\mathbb{B}_{\eta}\left(|\cdot|_{\mathcal{E}}\right)$ that satisfies properties (a)-(c) in item (ii), then $Y(0)$ belongs to \mathcal{M}_{q}^{s}.
(iv) For $q \neq \bar{q}$, we have $\mathcal{M}_{q}^{s} \cap \mathcal{M}_{\bar{q}}^{s}=\emptyset$. Moreover, $\phi+\mathbb{B}_{\eta}(|\cdot| \mathcal{E})=\bigcup_{|q| \leq q_{0}} \mathcal{M}_{q}^{s}$.
(v) The map $\left[-q_{0}, q_{0}\right] \rightarrow \operatorname{ran}\left(P_{q}^{c}\right) ; q \mapsto \mathbf{m}_{q}\left(P_{q}^{s} z_{0}\right)$, is Lipschitz for each $z_{0} \in \mathbb{B}_{\delta_{0}}(|\cdot| \mathcal{E})$.

For each $Y(0) \in \phi+\mathbb{B}_{\eta}\left(|\cdot|_{\mathcal{E}}\right)$ there exists exactly one shift $q \in\left[-q_{0}, q_{0}\right]$ such that $Y(0) \in \mathcal{M}_{q}^{s}$.

The stability result: the idea of the proof, no formulas
We show that $\|Y(t)\|_{\mathcal{E}_{\alpha}} \exp$ decay, $\|Y(t)\|_{\mathcal{E}_{0}}$ bounded for $Y_{t}=D Y_{x x}+c Y_{x}+R(Y), Y=(U, V)$. As P^{c} is one dimensional thus easy, consider $P^{s} Y$. Use bootstrap: $0<\gamma<\delta$ if $\|Y(0)\|_{\mathcal{E}} \leq \gamma$ then $\|Y(t)\|_{\mathcal{E}} \leq \delta$ for all $t<T_{\max }(\gamma, \delta) \leq \infty$.

1) As long as $\|Y(t)\| \varepsilon_{0}$ is small, $\|Y(t)\| \varepsilon_{\alpha}$ exp decay by Gronwall's because $T(t) P^{s}$ exp decay in $\mathcal{B}\left(\mathcal{E}_{\alpha}\right)$,

$$
P^{s} Y(t)=T(t) P^{s} Y(0)+\int_{0}^{t} T(t-s) P^{s} O\left(\|Y(s)\| \mathcal{E}_{0} \times\|Y(s)\|_{\mathcal{E}_{\alpha}}\right) d s
$$

2) As long as $\|Y(t)\|_{\mathcal{E}_{\alpha}} \exp$ decay, $\|Y(t)\|_{\mathcal{E}_{0}}$ is small by Gronwall's because $S_{1}(t) P^{s}$ is bounded and $S_{2}(t) P^{s}$ exp decay in $\mathcal{B}(\mathcal{E} 0)$,

$$
\begin{aligned}
& U(t)=S_{1}(t) U(0)+\int_{0}^{t} S_{1}(t-s) O\left(\left(\|U(s)\|\left\|_{\mathcal{E}_{0}}+\right\| V(s) \| \mathcal{E}_{0}\right) \times\|Y(s)\| \mathcal{E}_{\alpha}\right) d s \\
& V(t)=S_{2}(t) V(0)+\int_{0}^{t} S_{2}(t-s) O\left(\|V(s)\| \mathcal{E}_{0} \times\|Y(s)\| \mathcal{E}_{\alpha}\right) d s \\
& \text { It follows that } T_{\max }(\gamma, \delta)=\infty
\end{aligned}
$$

Chapter Two: Multidimensional model case

Consider the combustion system of two equations in \mathbb{R},

$$
\left\{\begin{array}{l}
U_{t}(t, x)=\Delta_{x} U(t, x)+V(t, x) g(U(t, x)), U, V \in \mathbb{R}^{n}, n \geq 2 \tag{25}\\
V_{t}(t, x)=\Delta_{x} V(t, x)-\kappa V(t, x) g(U(t, x)), x \in \mathbb{R}^{d},
\end{array}\right.
$$

where

$$
g(U)= \begin{cases}e^{-\frac{1}{U}} & \text { if } U>0 \tag{26}\\ 0 & \text { if } U \leq 0\end{cases}
$$

Multidimensional stability of a planar front

We consider a general reaction-diffusion system

$$
\begin{equation*}
u_{t}(t, x)=\Delta_{x} u(t, x)+f(u(t, x)) \tag{27}
\end{equation*}
$$

where $u \in \mathbb{R}^{n}, x \in \mathbb{R}^{d}, t \geq 0, f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth. Given the vector $e=(1,0, \ldots, 0) \in \mathbb{S}^{d}$, we will make a change of variable $z=e \cdot x-c t$ for some velocity $c>0$. Redenoting again $x=\left(z, x_{2}, \ldots, x_{d}\right)$, we arrive at the equation

$$
\begin{equation*}
u_{t}=\Delta_{x} u+c u_{z}+f(u) \tag{28}
\end{equation*}
$$

where $\Delta_{x}=\partial_{z}^{2}+\partial_{x_{2}}^{2}+\cdots+\partial_{x_{n}}^{2}=\partial_{z}^{2}+\Delta_{y}$.
A traveling wave solution $\phi=\phi(z)$ for system $u_{t}(t, x)=\Delta_{x} u(t, x)+f(u(t, x))$ is a smooth function of $z \in \mathbb{R}$ that is a time independent solution of (28) and satisfies

$$
\begin{equation*}
0=\partial_{z z} \phi+c \partial_{z} \phi+f(\phi) . \tag{29}
\end{equation*}
$$

Linearizing $u_{t}=\Delta_{x} u+c u_{z}+f(u)$ about ϕ, we obtain the variable coefficients expression $L=\Delta_{x}+c \partial_{z}+\partial_{u} f(\phi)$.
We need the spectral information about \mathcal{L} associated with L on

$$
\mathcal{E}_{0}=H^{k}\left(\mathbb{R}^{d}\right)^{n}=H^{k}\left(\mathbb{R} ; H^{k}\left(\mathbb{R}^{d-1} ; \mathbb{C}^{n}\right)\right)=H^{k}\left(\mathbb{R}^{d-1} ; H^{k}\left(\mathbb{R} ; \mathbb{C}^{n}\right)\right)
$$

we will assume $k \geq\left[\frac{d+1}{2}\right]$ throughout. Thus we decompose \mathcal{L} as

$$
(\mathcal{L} u)(z, y)=\left(\mathcal{L}_{1} u(\cdot, y)\right)(z)+\left(\Delta_{y} u(z, \cdot)\right)(y)
$$

where \mathcal{L}_{1} is associated with the one-dimensional differential variable coefficients expression $L_{1}=\partial_{z}^{2}+c \partial_{z}+\partial_{u} f(\phi)$ that depends only on z, and $\Delta_{y}=\left(\partial_{x_{2}}^{2}+\cdots+\partial_{x_{d}}^{2}\right)$.

We assume that there exist constant solutions $\phi_{ \pm} \in \mathbb{R}^{n}$ of $u_{t}(t, x)=\Delta_{x} u(t, x)+f(u(t, x))$ so that $f\left(\phi_{ \pm}\right)=0$ and there exist constants $K>0$ and $\omega_{-}<0<\omega_{+}$such that
$\left\|\phi(z)-\phi_{-}\right\|_{\mathbb{R}^{n}} \leq K e^{-\omega_{-} z}$ for $z \leq 0$,
$\left\|\phi(z)-\phi_{+}\right\| \mathbb{R}^{n} \leq K e^{-\omega_{+} z}$ for $z \geq 0$.
On \mathcal{E}_{0}^{n} the essential spectrum of $L_{1}=\partial_{z}^{2}+c \partial_{z}+\partial_{u} f(\phi)$ may touch the imaginary axis. To fix this, we introduce a class of weight functions of exponential type. Let $\alpha=\left(\alpha_{-}, \alpha_{+}\right) \in \mathbb{R}^{2}$. We call $\gamma_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ a weight function of class α if $0<\gamma_{\alpha}(z)$ for all $z \in \mathbb{R}$, the function $\gamma_{\alpha} \in C^{k+3}(\mathbb{R})$, and

$$
\gamma_{\alpha}(z)= \begin{cases}e^{\alpha_{-} z}, & \text { for large negative } z \tag{30}\\ e^{\alpha_{+} z}, & \text { for large positive } z\end{cases}
$$

Following the setting in [GLS], we will always assume that

$$
0<\alpha_{-}<-\omega_{-} \quad \text { and } \quad 0 \leq \alpha_{+}<\omega_{+} .
$$

For a fixed weight function γ_{α}, let $\mathcal{E}_{\alpha}=\left\{u: \gamma_{\alpha} \otimes I_{H^{k}\left(\mathbb{R}^{d-1}\right)} u \in \mathcal{E}_{0}\right\}$, with the norm $\|u\|_{\alpha}=\left\|\gamma_{\alpha} u\right\|_{0}$. Note that by the definition of \mathcal{E}_{α}, we can represent the weighted space \mathcal{E}_{α} by $H_{\alpha}^{k}\left(\mathbb{R} ; H^{k}\left(\mathbb{R}^{d-1} ; \mathbb{C}^{n}\right)\right)$. Here, for a function $u=u(z, y)$ we denote by $\left(\gamma_{\alpha} \otimes I_{H^{k}\left(\mathbb{R}^{d-1}\right)}\right) u$ the function of (z, y) defined by

$$
\left(\left(\gamma_{\alpha} \otimes I_{H^{k}\left(\mathbb{R}^{d-1}\right)}\right) u\right)(z, y)=\gamma_{\alpha}(z) u(z, y), \quad(z, y) \in \mathbb{R}^{d}
$$

If $\eta \in \operatorname{Sp}\left(\mathcal{L}_{1, \alpha}\right)$, and $\lambda \in \operatorname{Sp}\left(\Delta_{y}\right)$, then $\eta+\lambda \in \operatorname{Sp}\left(\mathcal{L}_{\alpha}\right)$, where

$$
\left(\mathcal{L}_{\alpha} u\right)(z, y)=\left(\mathcal{L}_{1, \alpha} u(\cdot, y)\right)(z)+\left(\Delta_{y} u(z, \cdot)\right)(y) .
$$

$\left(\mathcal{L}_{1, \alpha} w(z) \approx \eta w(z), \Delta_{y} v(y) \approx \lambda v(y)\right.$ then $u(z, y)=w(z) v(y)$ gives $\left.\mathcal{L}_{\alpha} w z=\left(\mathcal{L}_{1, \alpha} w\right) v+w\left(\Delta_{y} v\right) \approx \eta w v+\lambda w v=(\eta+\lambda) w v\right)$

Hypotheses

There exists $\alpha=\left(\alpha_{-}, \alpha_{+}\right) \in \mathbb{R}^{2}$ such that
(a) $\sup \left\{\operatorname{Re} \lambda: \lambda \in \operatorname{Sp}_{\text {ess }}\left(\mathcal{L}_{1, \alpha}\right)\right\}<0$.
(b) The only element of $\operatorname{Sp}\left(\mathcal{L}_{1, \alpha}\right)$ in $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq 0\}$ is a simple eigenvalue at $\lambda=0$ with ϕ^{\prime} being the respective eigenfunction.
(c) Under the assumption $f\left(u_{1}, 0\right)=\left(A u_{1}, 0\right)$ on the nonlinearity, we linearize $u_{t}=\Delta_{x} u+c u_{z}+f(u)$ at the left end state $(0,0)$ and obtain

$$
\begin{gather*}
L^{-}=\left(\begin{array}{cc}
L^{(1)} & \partial_{L_{2}} f_{1}(0,0) \\
0 & L^{(2)}
\end{array}\right) \tag{31}\\
L^{(1)}=\Delta_{x}+c \partial_{z}+\partial_{u_{1}} f_{1}(0,0)=\partial_{z z}+c \partial_{z}+A_{1} \tag{32}\\
L^{(2)}=\Delta_{x}+c \partial_{z}+\partial_{L_{2}} f_{2}(0,0) \tag{33}
\end{gather*}
$$

Hypotheses

$$
\begin{gather*}
L^{(1)}=\Delta_{x}+c \partial_{z}+\partial_{u_{1}} f_{1}(0,0)=\partial_{z z}+c \partial_{z}+A_{1}, \tag{34}\\
L^{(2)}=\Delta_{x}+c \partial_{z}+\partial_{L_{2}} f_{2}(0,0) . \tag{35}
\end{gather*}
$$

(1) The operator $\mathcal{L}^{(1)}$ on $\mathcal{E}_{0}^{n_{1}}$ induced by (34) generates a bounded semigroup, that is, $\left\|e^{t \mathcal{L}^{(1)}}\right\|_{\mathcal{B}\left(\mathcal{E}_{0}\right)} \leq K$ for some $K>0$ and all $t \geq 0$;
(2) The operator $\mathcal{L}^{(2)}$ on \mathcal{E}_{0} induced by (35) satisfies

$$
\sup \left\{\operatorname{Re} \lambda: \lambda \in \operatorname{Sp}\left(\mathcal{L}^{(2)}\right)\right\}<0,
$$

so that there exist numbers $\rho>0$ and $K>0$, for which the inequality

$$
\left\|e^{t \mathcal{L}^{(2)}}\right\|_{\mathcal{B}\left(\mathcal{E}_{0}\right)} \leq K e^{-\rho t}
$$

holds for all $t \geq 0$.

We also define the projection operators

$$
\begin{aligned}
\left(\mathcal{P}^{c} u\right)(z, y)=(& \left.P^{c} u(\cdot, y)\right)(z), \quad\left(\mathcal{P}^{s} u\right)(z, y)=\left(P^{s} u(\cdot, y)\right)(z) \\
& \left\|e^{t \mathcal{L}_{1, \alpha}} P^{s}\right\|_{\mathcal{B}\left(H_{\alpha}^{k}(\mathbb{R})\right)} \leq C e^{-\nu t} \\
& \left\|e^{t \mathcal{L}_{\alpha}} \mathcal{P}^{s}\right\|_{\mathcal{B}\left(\mathcal{E}_{\alpha}\right)} \leq C e^{-\nu t} \\
& \left\|e^{t \mathcal{L}_{\mathcal{E}}}\right\|_{\mathcal{B}(\mathcal{E})} \leq C
\end{aligned}
$$

Here, $\mathcal{E}=\mathcal{E}_{0} \cap \mathcal{E}_{\alpha}$ and $\|\cdot\|_{\mathcal{E}}=\max \left\{\|\cdot\|_{\mathcal{E}_{0}},\|\cdot\|_{\mathcal{E}_{\alpha}}\right\}$. Also, the semigroup $S_{\Delta_{y}}(t)$ generated by the linear operator Δ_{y} for all $t \geq 0$ satisfies the following decay estimates with some $\beta>0$:
(a) $\left\|S_{\Delta_{y}}(t) u\right\|_{H^{k}\left(\mathbb{R}^{d-1}\right)} \leq C\|u\|_{H^{k}\left(\mathbb{R}^{d-1}\right)}$,
(b) $\left\|S_{\Delta_{y}}(t) u\right\|_{H^{k}\left(\mathbb{R}^{d-1}\right)} \leq$

$$
C(1+t)^{-(d-1) / 4}\|u\|_{L^{1}\left(\mathbb{R}^{d-1}\right)}+C e^{-\beta t}\|u\|_{H^{k}\left(\mathbb{R}^{d-1}\right)}
$$

We study solutions u of $u_{t}=\Delta_{x} u+c u_{z}+f(u)$ near ϕ such that $u=\phi+$ small. We seek a function $v(\cdot)$ with small v^{0} such that

$$
\begin{equation*}
u(z, y)=\phi(z)+s m a l l=\phi(z-q(y))+v(z, y), \quad(z, y) \in \mathbb{R}^{d} . \tag{36}
\end{equation*}
$$

Substituting $u=\phi_{q}+v$ into $u_{t}=\Delta_{x} u+c u_{z}+f(u)$ we obtain, as in [Kapitula], a system of equations

$$
\begin{align*}
\partial_{t} v-\phi_{q}^{\prime} \partial_{t} q & =L v+\left(d f\left(\phi_{q}\right)-d f(\phi)\right) v+N\left(\phi_{q}, v\right) v \\
& -\Delta_{y} q \phi_{q}^{\prime}+\left(\nabla_{y} q \cdot \nabla_{y} q\right) \phi_{q}^{\prime \prime} \tag{37}
\end{align*}
$$

use \mathcal{P}^{s} and \mathcal{P}^{c} to uncouple (37) we obtain a system of equations:

$$
\partial_{t} v=L v+F_{1}(v, q), \partial_{t} q=\Delta_{y} q+F_{2}(v, q)
$$

$$
\partial_{t} v=L v+F_{1}(v, q), \partial_{t} q=\Delta_{y} q+F_{2}(v, q)
$$

Here, $F_{i}(v, q), i=1,2$ defines locally Lipschitz mappings on \mathcal{E} and $H^{k}\left(\mathbb{R}^{d-1}\right)$, respectively, and satisfy the estimates:
(a) $\left\|F_{1}(v, q)\right\|_{0} \leq$
$C_{K}\left(\|v\|_{0}\|v\|_{\alpha}+\|v\|_{0}\left\|v_{2}\right\|_{0}+\|q\|_{H^{k}}\|v\|_{\alpha}+\left\|\nabla_{y} q\right\|_{H^{k}}^{2}\right)$,
(b) $\left\|F_{1}(v, q)\right\|_{\alpha} \leq C_{K}\left(\|v\|_{0}\|v\|_{\alpha}+\|q\|_{H^{k}}\|v\|_{\alpha}+\left\|\nabla_{y} q\right\|_{H^{k}}^{2}\right)$,
(c) $\left\|F_{2}(v, q)\right\|_{H^{k}\left(\mathbb{R}^{d-1}\right)} \leq$
$C_{K}\left(\|v\|_{0}\|v\|_{\alpha}+\|q\|_{H^{k}}\|v\|_{\alpha}+\left\|\nabla_{y} q\right\|_{H^{k}}^{2}\right)$,
(d) $\left\|F_{2}(v, q)\right\|_{L^{1}\left(\mathbb{R}^{d-1}\right)} \leq$
$C_{K}\left(\|v\|_{0}\|v\|_{\alpha}+\|q\|_{H^{k}}\|v\|_{\alpha}+\left\|\nabla_{y} q\right\|_{H^{k}}^{2}\right)$.

Theorem

Assume $k \geq\left[\frac{d+1}{2}\right]$. There exist a small $\delta_{0}>0$ and a constant $C>0$ such that for each $0<\delta<\delta_{0}$ there exists $0<\eta<\delta$ such that the following is true. Let $\left(v^{0}, q^{0}\right) \in \mathcal{E}^{n} \times H^{k}\left(\mathbb{R}^{d-1}\right)$ be the initial condition satisfying
$E_{k}=\left\|v^{0}\right\|_{\mathcal{E}}+\left\|q^{0}\right\|_{H^{k+1}\left(\mathbb{R}^{d-1}\right)}+\left\|q^{0}\right\|_{W^{1,1}\left(\mathbb{R}^{d-1}\right)} \leq \eta$ and let $(v(t), q(t)) \in \mathcal{E}^{n} \times H^{k}\left(\mathbb{R}^{d-1}\right)$ be the solution to
$\partial_{t} v=L v+F_{1}(v, q), \partial_{t} q=\Delta_{y} q+F_{2}(v, q)$ with the initial condition $\left(v^{0}, q^{0}\right)$. Then for all $t>0$,
(1) $(v(t), q(t))$ is defined in $\mathcal{E}^{n} \times H^{k}\left(\mathbb{R}^{d-1}\right)$;
(2) $\|v(t)\|_{\mathcal{E}}+\|q(t)\|_{H^{k}} \leq \delta$;
(3) $\|v(t)\|_{\alpha} \leq C(1+t)^{-(d+1) / 2} E_{k}$;
(4) $\|q(t)\|_{H^{k}} \leq C(1+t)^{-(d-1) / 4} E_{k}$;
(5) $\left\|v_{1}(t)\right\|_{0} \leq C E_{k}$;
(6) $\left\|v_{2}(t)\right\|_{0} \leq C(1+t)^{-(d+1) / 2} E_{k}$.

Thank you!!

