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A typical example
Combustion model for a one-dimensional fuel

Ut = ∂xxU + Vg(U), U = U(x , t) temperatura

Vt = ε∂xxV − κVg(U), V = V (x , t) concentration of unburnt fuel

g(U) =

{
e−

1
U , if U ≥ 0

0, if U < 0
unit reaction rate, 1 >> ε ≥ 0, κ > 0.

ε = 0 when the fuel is solid.
κ is the exothermicity, the larger κ is the more fuel one has to burn
to achieve a given increase of the temperature.
U = 0 background temperature (no reaction).
Traveling combustion front φ(ξ) = (U(ξ),V (ξ)), ξ = x − ct,
c > 0 speed of the front moving to the right. Behind the front
(U,V ) = (U−∞, 0) (burnt fuel). Ahead of the front
(U,V ) = (0,V+∞) (concentration of unburnt fuel V+∞ > 0).
We study one- and multidimensional generalizations of this
reaction-diffusion system



Overview

Introduction: no formulas, just pictures

Stable foliations in vicinity of a traveling front for one dimensional
reaction diffusion systems

Planar fronts in multidimensional reaction diffusion systems



Brief history
We study stability of front solutions of nonlinear equations. For
existence see [Berestycki, Larrouturou, P.L. Lions], [Berestycki,
Nirenberg], [Fiedler, Scheel, Vishik], [Fife], [Hamel, Roquejoffre],
[Henry], [Haragus, Scheel], [Kapitula, Promislow], [Morita,
Ninomiya], [Rabinowitz], [Sandstede], [Volpert, Volpert, Volpert],
[Xin] and many others.
Planar fronts are solutions to partial differential equations that
move in a given direction with constant speed without changing
their shape and are asymptotic to spatially constant steady-state
solutions, the end states. Translations of fronts are also fronts. We
prove orbital stability of fronts, that is, show that a small
perturbation of a front evolves to a translation of the front

Y Y Y

x x x

φ φ
φ

φq = φ(· − q) φq

Y (t;Y (0))



Classical 1-dimensional case
See Bates, Henry, Jones, Pego, Sandstede, Sattinger, Scheel,
Volpert, Volpert, Volpert, Weinstein – many many others –
classical book by [Volpert3], newer book by [Kapitula/Promislow])
Let Y (t,Y (0)) be the solution to a reaction-diffusion system
Yt = DYxx + cYx + R(Y ) that has a traveling front solution φ,
that is, Dφxx + cφx + R(φ) = 0.
Decompose: Solution = component in the direction of the front +
normal to the front,
Y (t,Y (0)) = φ(· − q(t)) + v(t), where Y (0) is close to φ.
Linearize at the wave φ, let L1 be the 1-dimensional linear operator
obtained by the linearization. Since φx satisfies L1φx = 0, the
spectrum of L1 contains 0. Assume 0 is the only unstable spectrum
of L1. Let Ps be the projection on the stable part of the spectrum.

{
v̇ = (L1|ranPs )v + small(v , q) ⇒ ‖v(t)‖E0 ≤ Ce−νt

q̇ = 0(the eigenvalue) + small(v , q) ⇒ q(t)→ q∗



Classical 1-dimensional case in pictures

Im λ

Re λ

Sp (L1; E0)

φ

φ(· − q)

Ran Ps

Ran Pc

Y (t;Y (0))

Sp(L1| ranPc) = {0}, ranPc = span{φ′}



Conclusion for the classical 1-dimensional case

Orbital Stability: Y (t,Y (0))→ φ(· − q∗).

Ran Ps

Ran Pcφ

φ(· − q)

φ(· − q∗)

Y (t;Y (0))



More complicated 1-dimensional case
Newer work by many including [Ghazaryan/Latushkin/Schecter]

Pass to the exponential weighted space

Im λ

Re λ

Im λ

Re λ

Sp (L1; E0) Sp (L1; Eα)

Spectrum is good, nonlinearity is bad, so one needs to pass to the
intersection space E0 ∩ Eα, see [GLS]. Then:

‖v(t)‖Eα ≤ Ce−νt ; ‖v(t)‖E0 ≤ C , q(t)→ q∗.

Moreover, in appropriated variables v = (v1, v2) with v1 ∈ Rn1 ,
v2 ∈ Rn2 , n1 + n2 = n, we have ‖v1(t)‖E0 ≤ C , ‖v2(t)‖E0 ≤ Ce−νt .



Our current 1-dimensional work

We prove for each q a stable manifold exists through φ(· − q).

Ran Pc

Ran Ps

M s
q

Y (t;Y (0))

φq∗
φ

φq



Multidimensional case (earlier work by many in particular
by [Kapitula])

Yt = (∂2
x1

+ ∆y )Y + c∂x1Y + R(Y )

Y

x1

y = (x2, ..., xd )

φ(x1, x2, ..., xd ) = φ(x1)



Y

x1

y = (x2, ..., xd )

Y (0) = φ+small

φ

Decompose: solution = component in the direction of the front +
transversal to the front

Y (t,Y (0))(x1, y) = φ(x1 − q(t, y)) + v(t, x1, y),

q(t, y) is the drift along the front in y = (x2, . . . , xd).



Linearization L as in [Kapitula] is given by

(Lu)(x1, y) =
(
L1u(· , y)

)
(x1) +

(
∆yu(x1, ·)

)
(y)

Yt = (∂2
x1

+ ∆y )Y + c∂x1Y + R(Y )

Sp (L; E0(Rd))

Re λ

Im λ Im λ

Re λ Re λ

Im λ

Sp (L1; E0(R))



Algebraic decay in earlier work [Kapitula]

{
v̇ = L|ran(Ps(x)⊗Iy )v + small(v , q)

q̇ = ∆yq + small(v , q).

‖et∆y ‖L1(Rd−1)→Hk (Rd−1) ≤
C

(1 + t)(d−1)/4

⇒‖q(t)‖Hk (Rd−1) → 0 algebraically as t →∞
‖v(t)‖E0 → 0 algebraically as t →∞.

Since the drift along the front fades away

⇒ Y (t,Y (0))→ φ as t →∞ algebraically



A more complicated case (our current work)

Linearization (Lαu)(x1, y) =
(
L1,αu(· , y)

)
(x1) +

(
∆yu(x1, ·)

)
(y)

in the current work

Re λ

Im λ Im λ

Re λ Re λ

Im λ

Sp(L1, Eα(R)) Sp(L, Eα(Rd))

Pass to the weighted space

Im λ

Sp(L1, E0(R))



Spectrum is good, nonlinearity is bad, and we pass to the
intersection space E0 ∩ Eα. We prove that

‖v(t)‖E0 ≤ C

‖v(t)‖Eα ≤
C

poly. of t
→ 0

‖q(t)‖Hk (Rd−1) ≤
C

poly. of t
→ 0.

Moreover, in appropriate variables v = (v1, v2),

‖v1(t)‖E0 ≤ C ;

‖v2(t)‖Eα ≤
C

poly. of t
→ 0,

as t →∞.



CHAPTER 1: A class of 1-dimensional reaction diffusion
systems

Consider the system of reaction diffusion equations,

Yt(t, x) = D∂xxY (t, x) + R(Y (t, x)), Y ∈ Rn, x ∈ R, t > 0, (1)

where D = diag(d1, · · · , dn) with all di ≥ 0, and the function R(·)
is smooth and satisfies some additional special properties listed
later. A typical example that we have in mind is the following
system from solid combustion for Y = (U,V ):

{
Ut(t, x) = ∂xxU(t, x) + V (t, x)g(U(t, x)), U,V ∈ R,
Vt(t, x) = ε∂xxV (t, x)− κV (t, x)g(U(t, x)), x ∈ R,

(2)

where

g(U) =

{
e−

1
U if U > 0;

0 if U ≤ 0,
(3)



Hypotheses
Passing to the moving coordinate frame ξ = x − ct and redenoting
ξ again by x , we arrive at the nonlinear equation

Yt = DYxx + cYx + R(Y ), x ∈ R, t ≥ 0. (4)

Assume that system (4) admits a traveling wave solution φ(x) that
converges to the end states φ± as x → ±∞ exponentially; i.e.,

|φ(x)− φ−| ≤ Ce−ω−x , x ≤ 0,

|φ(x)− φ+| ≤ Ce−ω+x , x ≥ 0,
(5)

for some ω− < 0 < ω+ and C > 0. Without loss of generality, we
also assume that φ− = 0.

u

x
-

6

0

φ φq = φ(· − q)



We study the system on the unweighted space E0 = H1(R) since it
is closed under multiplication, and denote the norm on E0 by ‖ · ‖0.
Let α = (α−, α+) ∈ R2. We say that γα : R→ R is a weight
function of class α if γα is C 2, γα(x) > 0 for all x ∈ R, and
γα(x) = eα−x for x ≤ −x0 and γα(x) = eα+x for x ≥ x0 for some
x0 > 0. We assume that 0 < α− < −ω− and 0 ≤ α+ < ω+,
where ω± are the exponents that control the decay of φ to φ±.
Given such a pair α = (α−, α+), we introduce the weighted space
Eα = {u : R→ Rn : γαu ∈ E0} with the norm |u|α = |γαu|0. The
intersection space E = E0 ∩ Eα is endowed with the norm

|u|E = max{|u|0, |u|α}

Example: γα(x) = eαx , E0 = H1(R), Eα = {u : eαxu ∈ H1(R)}.
Isometry Mα : Eα → E0 : u 7→ eαxu. The operator ∂x ,α : u 7→ u′ on
Eα is similar via Mα∂x ,αM

−1
α = ∂x ,0 − α to ∂x ,0 − α, where

∂x ,0 : u 7→ u′, because ∂x ,αM
−1
α u = (e−αxu)′ = e−αx(u′ − α).



We further assume that the nonlinear term R in
Yt = DYxx + cYx + R(Y ) has the following product structure: The
nonlinear term R belongs to C 4(Rn,Rn). In appropriate variables
Y = (U,V )T with U ∈ Rn1 , V ∈ Rn2 and n1 + n2 = n, we have

R(U, 0) = (A1U, 0) (6)

for a constant n1 × n1 matrix A1. In other words, we suppose that

R(U,V ) =

(
A1U + R1(U,V )

R2(U,V )

)
=

(
A1U + R̃1(U,V )V

R̃2(U,V )V

)
,

where the maps Rj belong to C 3(Rn,Rnj ) and satisfy Rj(U, 0) = 0
for j ∈ {1, 2} and U ∈ Rn1 . Note that condition (6) yields
R(0, 0) = R(φ−) = 0. We also split

D =

(
D1 0
0 D2

)
, D1 = diag(d1, . . . , dn1), D2 = diag(dn1+1, . . . , dn).



Let q ∈ R. We write φq(x) = φ(x − q) for the shifted wave.
Linearizing Yt = DYxx + cYx + R(Y ) at φq, we arrive at

Yt = LqY + Fq(Y ), where LqY = DYxx + cYx + ∂YR(φq)Y . (7)

Here, the nonlinear term Fq : Rn → Rn is written as

Fq(Y ) =

∫ 1

0
(∂YR(φq + tY )− ∂YR(φq))Ydt. (8)

The linearization of Yt = DYxx + cYx + R(Y ) at φ− = (0, 0)T is

Yt = L−Y + G (Y ), where L−Y = DYxx + cYx + ∂YR(0)Y (9)

and G : Rn → Rn; G (Y ) = R(Y )− ∂YR(0)Y .



Linearization LqY = DYxx + cYx + ∂YR(φq)Y
We will impose conditions on L0 at q = 0; i.e., on the linearization
at the original traveling wave φ. We further consider Lq for
|q| ≤ q0 with some q0 > 0.
Linearization L−Y = DYxx + cYx + ∂YR(0)Y

∂YR(0, 0) =

(
A1 ∂VR1(0, 0)
0 ∂VR2(0, 0)

)
, L− =

(
L(1) ∂VR1(0, 0)

0 L(2)

)
(10)

with the differential expressions

L(1)U = D1Uxx + cUx + A1U,

L(2)V = D2Vxx + cVx + ∂VR2(0, 0)V .



Assumptions on linearization LqY = DYxx + cYx + ∂YR(φq)Y :
We assume that there exists α = (α−, α+) ∈ R2 such that

(a) sup{Reλ : λ ∈ Spess(L0,α)} < 0 for the differential operator
on Eα generated by L0.

(b) The only element of Sp(L0,α) in {λ ∈ C : Reλ ≥ 0} is a
simple eigenvalue at λ = 0 with φ′ being the respective
eigenfunction.

We let Pc
q denote the spectral projection for Lq,α in Eα onto

kerLq,α = span{φ′q} and the complementary projection by
Ps
q = I − Pc

q . Denote by {Tq(t)}t≥0 the semigroup generates by
Lq, this implies ‖Tq(t)Ps

q‖B(Eα) ≤ Ce−νt .



Assumptions on linearization

L−Y = DYxx + cYx + ∂YR(0)Y =

(
L(1) ∂VR1(0, 0)

0 L(2)

)
Y :

Denote by {S1(t)}t≥0, {S2(t)}t≥0 the semigroups generated by
L(1)U = D1Uxx + cUx +A1U, L(2)V = D2Vxx + cVx +∂VR2(0, 0)V
on E0 for the decomposition Y = (V ,U) and assume the following:
The strongly continuous semigroup {S1(t)}t≥0 is bounded and the
semigroup {S2(t)}t≥0 is uniformly exponentially stable on E0:

‖S1(t)‖B(E0) ≤ C , ‖S2(t)‖B(E0) ≤ Ce−ρt

for some ρ > 0 and all t ≥ 0.
This also implies (a lemma):

‖S(t)‖B(E0) ≤ C , for all t ≥ 0. (11)

sup
|q|≤q0

sup
t≥0
‖Tq(t)‖B(E) <∞, . (12)



Nonlinearity

Yt = LqY + Fq(Y ), Fq(Y ) =
∫ 1

0 (∂YR(φq + tY )− ∂YR(φq))Ydt.
Assume that α = (α−, α+) satisfies 0 < α− < −ω− and
0 ≤ α+ < ω+, and that the nonlinearity R ∈ C 4(Rn,Rn) fulfills
R(U, 0) = (A1U, 0). Let δ1 > 0 and choose a radius δ ∈ (0, δ1].
Then for all functions y = (u, v) and ȳ = (ū, v̄) from E with
|y |E , |ȳ |E ≤ δ the estimates

|Fq(y)|0 ≤ C |y |0 (|y |α + |v |0), (13)

|Fq(y)|α ≤ C |y |0 |y |α, (14)

|Fq(y)− Fq(ȳ)|0 ≤ C
(
|y − ȳ |0 (|y |α (15)

+ |ȳ |α) + |y − ȳ |0 |v |0 + |ȳ |0 |v − v̄ |0
)
, (16)

|Fq(y)− Fq(ȳ)|α ≤ |y − ȳ |α (|y |0 + |ȳ |0) (17)

are true, where C = C (δ1, q0) and |q| ≤ q0.



The Lyapunov-Perron operator
We next establish basic properties of the Lyapunov-Perron operator
Φq(y , z0) for Yt = LqY + Fq(Y ) defined by

Φq(y , z0)(t) = Tq(t)Ps
qz0 +

∫ t

0
Tq(t − τ)Ps

qFq(y(τ))dτ

−
∫ ∞
t

Pc
qFq(y(τ))dτ,

(18)

where |q| ≤ q0 and z0 ∈ E0 ∩ Eα = E satisfies

|z0|E = max{|z0|0, |z0|α} ≤ δ0, for some δ0 > 0. (19)

For continuous y = (u, v) : R→ EE = E0 ∩ Eα we define the norms

‖y‖ω,α = sup
t≥0

eωt |y(t)|α, ‖y‖0,0 = sup
t≥0
|y(t)|0, ‖v‖ω,0 = sup

t≥0
eωt |v(t)|0,

Here we have to modify these exponents such that 0 < ω < ρ < ν.
Let δ > 0. Then Bδ(‖ · ‖) is the set of continuous functions
y : R→ E0 ∩ Eα such that

‖y‖ := max (‖y‖ω,α, ‖y‖0,0, ‖v‖ω,0) ≤ δ. (20)



Properties of Lyapunov-Perron operator

Φq(y , z0)(t) = Tq(t)Ps
qz0 +

∫ t

0
Tq(t − τ)Ps

qFq(y(τ))dτ

−
∫ ∞
t

Pc
qFq(y(τ))dτ, Yt = LqY + Fq(Y ).

(21)

(Lq generates {Tq(t)}, ker(Lq) = ranPc
q thus Tq(t − τ)Pc

q = Pc
q)

Take q0 > 0. Let δ > 0 and δ0 = δ0(δ) > 0 be small enough. For
each z0 ∈ Bδ0(|·|E) the Lyapunov-Perron operator y 7→ Φq(y , z0)
leaves Bδ(‖ · ‖) invariant and is a strict contraction on this ball for
all |q| ≤ q0. Moreover, for the norm ‖ · ‖ defined in (20) one has

‖Φq(y , z0)− Φq(ȳ , z̄0)‖ ≤ C |z0 − z̄0|E + Cδ‖y − ȳ‖ (22)

for some C > 0 and all z0, z̄0 ∈ Bδ0(| · |E), y , ȳ ∈ Bδ(‖ · ‖), and
|q| ≤ q0.



Stable manifold

We will now foliate a small neighborhood of φ by stable manifolds
Ms

q going through φq.

Ran Pc

Ran Ps

M s
q

Y (t;Y (0))

φq∗
φ

φq



Stable manifold

For a small q0 > 0 and each q ∈ [−q0, q0], we now construct a
function mq : ran(Ps

q)→ Pc
q whose graph contains φq and it is a

stable manifold Ms
q for the system Yt = DYxx + cYx + R(Y ).

We further prove that the sets Ms
q satisfy the standard properties

of stable manifolds and that they foliate a small neighborbood of φ.
Let δ, δ0 > 0 be sufficiently small and q0 > 0. Take |q| ≤ q0 and
z0 ∈ ran(Ps

q) ∩ Bδ0(| · |E). There exists a unique function
yqz0 : R+ → E which belongs to Bδ(‖ · ‖) and is a fixed point of the
Lyapunov-Perron operator Φq(·, z0); that is, for t ≥ 0,

yqz0
(t) = Tq(t)z0 +

∫ t

0
Tq(t − τ)Ps

qFq(yqz0
(τ))dτ −

∫ ∞
t

Pc
qFq(yqz0

(τ))dτ

= Tq(t)
[
z0 −

∫ ∞
0

Pc
qFq(yqz0

(τ))dτ
]

+

∫ t

0
Tq(t − τ)Fq(yqz0

(τ))dτ.



We define the function mq : ran(Ps
q) ∩ Bδ0(| · |E)→ ran(Pc

q ) by

mq(z0) = −
∫ ∞

0
Pc
qFq(yqz0

(τ))dτ. (23)

The fixed point y = yqz0 of the Lyapunov-Perron operator contained
in Bδ(‖ · ‖) satisfies eωt |y(t)|α ≤ δ, |y(t)|0 ≤ δ and the equation

y(t) = Tq(t)y(0) +

∫ t

0
Tq(t − τ)Fq(y(τ))dτ, t ≥ 0. (24)

For a number η > 0 to be fixed below, the stable manifold Ms
q is

then defined as the graph of mq(·) shifted to φq by

Ms
q = {φq+z0 +mq(z0) : z0 ∈ ran(Ps

q)∩Bδ0(|·|E)}∩(φ+Bη(|·|E)),

where |q| ≤ q0 and φ+ Bη(| · |E) is the closed ball in E = Eα ∩ E0

with radius η and centered at the original traveling wave φ.



Theorem
Let q0, δ, δ0, η > 0 be sufficiently small, |q| ≤ q0, and
0 < ω < ρ < ν. Then the ball φ+ Bη(| · |E) is foliated by the
stable manifolds Ms

q for the nonlinear equation
Yt = DYxx + cYx + R(Y ) and the following assertions hold.

(i) Each Ms
q is a Lipschitz manifold in E . If Y (0) ∈Ms

q and the
mild solution Y (t;Y (0)) of Yt = DYxx + cYx + R(Y ) belongs
to φ+ Bη(| · |E) for some t ≥ 0, then Y (t;Y (0)) is contained
in Ms

q.

(ii) For each Y (0) ∈Ms
q there exists a solution Y (t;Y (0)) of

Yt = DYxx + cYx + R(Y ) which exists for all t ≥ 0 and
satisfies |Y (t;Y (0))− φq|E ≤ δ as well as

(a) |Y (t;Y (0))− φq|α ≤ Ce−ωt |Y (0)− φq|E ,
(b) |π1(Y (t;Y (0))− φq)− Uq|0 ≤ C |Y (0)− φq|E ,
(c) |π2(Y (t;Y (0))− φq)− Vq|0 ≤ Ce−ωt |Y (0)− φq|E

for all t ≥ 0. Here, φq = (Uq,Vq) = φ(· − q) is the shifted
traveling wave, π1 : Y = (U,V )→ U, and
π2 : Y = (U,V )→ V .



(Continued)

Theorem

(iii) If Y (t;Y (0)), t ≥ 0, is a mild solution of
Yt = DYxx + cYx + R(Y ) with Y (0) ∈ φ+ Bη(| · |E) that
satisfies properties (a)–(c) in item (ii), then Y (0) belongs to
Ms

q.

(iv) For q 6= q̄, we have Ms
q ∩Ms

q̄ = ∅. Moreover,
φ+ Bη(| · |E) =

⋃
|q|≤q0

Ms
q.

(v) The map [−q0, q0]→ ran(Pc
q ); q 7→ mq(Ps

qz0), is Lipschitz
for each z0 ∈ Bδ0(| · |E).



Ran Pc

Ran Ps

M s
q

Y (t;Y (0))

φq∗
φ

φq

For each Y (0) ∈ φ+ Bη(| · |E) there exists exactly one shift
q ∈ [−q0, q0] such that Y (0) ∈Ms

q.



The stability result: the idea of the proof, no formulas
We show that ‖Y (t)‖Eα exp decay, ‖Y (t)‖E0 bounded for
Yt = DYxx + cYx + R(Y ), Y = (U,V ). As Pc is one dimensional
thus easy, consider PsY . Use bootstrap: 0 < γ < δ if
‖Y (0)‖E ≤ γ then ‖Y (t)‖E ≤ δ for all t < Tmax(γ, δ) ≤ ∞.
1) As long as ‖Y (t)‖E0 is small, ‖Y (t)‖Eα exp decay by Gronwall’s
because T (t)Ps exp decay in B(Eα),

PsY (t) = T (t)PsY (0)+

∫ t

0
T (t−s)PsO(‖Y (s)‖E0×‖Y (s)‖Eα)ds

2) As long as ‖Y (t)‖Eα exp decay, ‖Y (t)‖E0 is small by Gronwall’s
because S1(t)Ps is bounded and S2(t)Ps exp decay in B(E0),

U(t) = S1(t)U(0)+

∫ t

0
S1(t−s)O((‖U(s)‖E0+‖V (s)‖E0)×‖Y (s)‖Eα)ds

V (t) = S2(t)V (0) +
∫ t

0 S2(t − s)O(‖V (s)‖E0 × ‖Y (s)‖Eα)ds
It follows that Tmax(γ, δ) =∞



Chapter Two: Multidimensional model case

Consider the combustion system of two equations in R,{
Ut(t, x) = ∆xU(t, x) + V (t, x)g(U(t, x)), U,V ∈ Rn, n ≥ 2

Vt(t, x) = ∆xV (t, x)− κV (t, x)g(U(t, x)), x ∈ Rd ,

(25)
where

g(U) =

{
e−

1
U if U > 0;

0 if U ≤ 0,
(26)



Multidimensional stability of a planar front

We consider a general reaction-diffusion system

ut(t, x) = ∆xu(t, x) + f (u(t, x)), (27)

where u ∈ Rn, x ∈ Rd , t ≥ 0, f (·) : Rn → Rn is smooth.
Given the vector e = (1, 0, ..., 0) ∈ Sd , we will make a change of
variable z = e · x − ct for some velocity c > 0. Redenoting again
x = (z , x2, ..., xd), we arrive at the equation

ut = ∆xu + cuz + f (u), (28)

where ∆x = ∂2
z + ∂2

x2
+ · · ·+ ∂2

xn = ∂2
z + ∆y .

A traveling wave solution φ = φ(z) for system
ut(t, x) = ∆xu(t, x) + f (u(t, x)) is a smooth function of z ∈ R
that is a time independent solution of (28) and satisfies

0 = ∂zzφ+ c∂zφ+ f (φ). (29)



Linearizing ut = ∆xu + cuz + f (u) about φ, we obtain the variable
coefficients expression L = ∆x + c∂z + ∂uf (φ).
We need the spectral information about L associated with L on

E0 = Hk(Rd)n = Hk
(
R;Hk(Rd−1;Cn)

)
= Hk

(
Rd−1;Hk(R;Cn)

)
,

we will assume k ≥ [d+1
2 ] throughout. Thus we decompose L as

(Lu)(z , y) =
(
L1u(· , y)

)
(z) +

(
∆yu(z , ·)

)
(y)

where L1 is associated with the one-dimensional differential
variable coefficients expression L1 = ∂2

z + c∂z + ∂uf (φ) that
depends only on z , and ∆y = (∂2

x2
+ · · ·+ ∂2

xd
).



We assume that there exist constant solutions φ± ∈ Rn of
ut(t, x) = ∆xu(t, x) + f (u(t, x)) so that f (φ±) = 0 and there
exist constants K > 0 and ω− < 0 < ω+ such that
||φ(z)− φ−||Rn ≤ Ke−ω−z for z ≤ 0,
||φ(z)− φ+||Rn ≤ Ke−ω+z for z ≥ 0.
On En0 the essential spectrum of L1 = ∂2

z + c∂z + ∂uf (φ) may
touch the imaginary axis. To fix this, we introduce a class of
weight functions of exponential type. Let α = (α−, α+) ∈ R2. We
call γα : R→ R a weight function of class α if 0 < γα(z) for all
z ∈ R, the function γα ∈ C k+3(R), and

γα(z) =

{
eα−z , for large negative z ,

eα+z , for large positive z .
(30)

Following the setting in [GLS], we will always assume that

0 < α− < −ω− and 0 ≤ α+ < ω+.



For a fixed weight function γα, let Eα = {u : γα⊗ IHk (Rd−1)u ∈ E0},
with the norm ‖u‖α = ‖γαu‖0. Note that by the definition of Eα,
we can represent the weighted space Eα by Hk

α

(
R;Hk(Rd−1;Cn)

)
.

Here, for a function u = u(z , y) we denote by (γα ⊗ IHk (Rd−1))u
the function of (z , y) defined by

((γα ⊗ IHk (Rd−1))u)(z , y) = γα(z)u(z , y), (z , y) ∈ Rd



Im λ

Re λ

Sp(L1, E0(R))

Pass to the weighted space

Im λ

Sp(L1,α, Eα(R))



If η ∈ Sp(L1,α), and λ ∈ Sp(∆y ), then η + λ ∈ Sp(Lα), where

(Lαu)(z , y) =
(
L1,αu(· , y)

)
(z) +

(
∆yu(z , ·)

)
(y).

(L1,αw(z) ≈ ηw(z), ∆yv(y) ≈ λv(y) then u(z , y) = w(z)v(y)
gives Lαwz = (L1,αw)v + w(∆yv) ≈ ηwv + λwv = (η + λ)wv)
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Im λ Im λ

Re λ

Im λ

Sp(L, Eα(Rd))Sp(L1,α, Eα(R))



Hypotheses

There exists α = (α−, α+) ∈ R2 such that

(a) sup{Reλ : λ ∈ Spess(L1,α)} < 0.

(b) The only element of Sp(L1,α) in {λ ∈ C : Reλ ≥ 0} is a
simple eigenvalue at λ = 0 with φ′ being the respective
eigenfunction.

(c) Under the assumption f (u1, 0) = (Au1, 0) on the nonlinearity,
we linearize ut = ∆xu + cuz + f (u) at the left end state (0, 0)
and obtain

L− =

(
L(1) ∂u2f1(0, 0)

0 L(2)

)
(31)

L(1) = ∆x + c∂z + ∂u1f1(0, 0) = ∂zz + c∂z + A1, (32)

L(2) = ∆x + c∂z + ∂u2f2(0, 0). (33)



Hypotheses

L(1) = ∆x + c∂z + ∂u1f1(0, 0) = ∂zz + c∂z + A1, (34)

L(2) = ∆x + c∂z + ∂u2f2(0, 0). (35)

(1) The operator L(1) on En1
0 induced by (34) generates a

bounded semigroup, that is, ‖etL(1)‖B(E0) ≤ K for some
K > 0 and all t ≥ 0;

(2) The operator L(2) on E0 induced by (35) satisfies

sup{Reλ : λ ∈ Sp(L(2))} < 0,

so that there exist numbers ρ > 0 and K > 0, for which the
inequality

‖etL(2)‖B(E0) ≤ Ke−ρt

holds for all t ≥ 0.



We also define the projection operators

(Pcu)(z , y) =
(
Pcu(·, y)

)
(z), (Psu)(z , y) =

(
Psu(·, y)

)
(z).

‖etL1,αPs‖B(Hk
α(R)) ≤ Ce−νt ;

‖etLαPs‖B(Eα) ≤ Ce−νt ;

‖etLE‖B(E) ≤ C .

Here, E = E0 ∩ Eα and ‖ · ‖E = max{‖ · ‖E0 , || · ||Eα}. Also, the
semigroup S∆y (t) generated by the linear operator ∆y for all t ≥ 0
satisfies the following decay estimates with some β > 0:

(a) ||S∆y (t)u||Hk (Rd−1) ≤ C ||u||Hk (Rd−1),

(b) ||S∆y (t)u||Hk (Rd−1) ≤
C (1 + t)−(d−1)/4||u||L1(Rd−1) + Ce−βt ||u||Hk (Rd−1).



We study solutions u of ut = ∆xu + cuz + f (u) near φ such that
u = φ+ small . We seek a function v(·) with small v0 such that

u(z , y) = φ(z)+small = φ(z−q(y))+v(z , y), (z , y) ∈ Rd . (36)

Substituting u = φq + v into ut = ∆xu + cuz + f (u) we obtain, as
in [Kapitula], a system of equations

∂tv − φ′q∂tq = Lv + (df (φq)− df (φ))v + N(φq, v)v

−∆yqφ
′
q + (∇yq · ∇yq)φ′′q,

(37)

use Ps and Pc to uncouple (37) we obtain a system of equations:

∂tv = Lv + F1(v , q), ∂tq = ∆yq + F2(v , q).



∂tv = Lv + F1(v , q), ∂tq = ∆yq + F2(v , q).

Here, Fi (v , q), i = 1, 2 defines locally Lipschitz mappings on E and
Hk(Rd−1), respectively, and satisfy the estimates:

(a) ‖F1(v , q)‖0 ≤
CK (‖v‖0‖v‖α + ‖v‖0‖v2‖0 + ‖q‖Hk‖v‖α + ‖∇yq‖2

Hk ),

(b) ||F1(v , q)||α ≤ CK

(
||v ||0||v ||α + ||q||Hk ||v ||α + ||∇yq||2Hk

)
,

(c) ||F2(v , q)||Hk (Rd−1) ≤
CK

(
||v ||0||v ||α + ||q||Hk ||v ||α + ||∇yq||2Hk

)
,

(d) ||F2(v , q)||L1(Rd−1) ≤
CK

(
||v ||0||v ||α + ||q||Hk ||v ||α + ||∇yq||2Hk

)
.



Theorem
Assume k ≥ [d+1

2 ]. There exist a small δ0 > 0 and a constant
C > 0 such that for each 0 < δ < δ0 there exists 0 < η < δ such
that the following is true. Let (v0, q0) ∈ En × Hk(Rd−1) be the
initial condition satisfying
Ek = ||v0||E + ‖q0‖Hk+1(Rd−1) + ‖q0‖W 1,1(Rd−1) ≤ η and let

(v(t), q(t)) ∈ En × Hk(Rd−1) be the solution to
∂tv = Lv + F1(v , q), ∂tq = ∆yq + F2(v , q) with the initial
condition (v0, q0). Then for all t > 0,

(1) (v(t), q(t)) is defined in En × Hk(Rd−1);

(2) ||v(t)||E + ||q(t)||Hk ≤ δ;

(3) ||v(t)||α ≤ C (1 + t)−(d+1)/2Ek ;

(4) ||q(t)||Hk ≤ C (1 + t)−(d−1)/4Ek ;

(5) ||v1(t)||0 ≤ CEk ;

(6) ||v2(t)||0 ≤ C (1 + t)−(d+1)/2Ek .



Thank you!!
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