Université du Havre UFR des Sciences et Techniques Licence Sciences, Technologies, Santé (2ème Année)- Méthodes numériques

Interrogation écrite du 3 novembre 2011 - Durée : 1 heure. Aucun document n'est autorisé. Les calculatrices sont interdites.

Exercice 1.

- 1. Énoncer l'algorithme de Newton.
- 2. Énoncer l'algorithme de Lagrange.
- 3. Énoncer l'algorithme de la corde.

Exercice 2.

- 1. Énoncer l'algorithme de point fixe.
- 2. Énoncer un théorème donnant une condition suffisante de convergence globale de la méthode du point fixe.
- 3. Soit

$$g(x) = \frac{1}{2}x(1-x)$$

- (a) Montrer que pour tout $x \in [0, 1], g(x) \in [0, 1].$
- (b) Calculer la valeur de :

$$\sup_{x \in [0,1]} |g'(x)|.$$

(c) Soit $x_0 \in [0, 1]$ et x_n la suite définie par

$$\forall n \in \mathbb{N}$$
 $x_{n+1} = g(x_n).$

Quelle est la limite de la suite x_n quand n tend vers $+\infty$?

Exercice 3.

1. Soit f(x) la fonction définie sur \mathbb{R} par :

$$f(x) = x^4 - 5x^2 + 4$$

- 2. Déterminer les racines de f.
- 3. Calculer la dérivée de f, et dresser son tableau de variation. Calculer également sa dérivée seconde puis tracer l'allure de la fonction f.

4. On cherche maintenant à étudier la limite de la suite x_n définie par l'algorithme de Newton suivant la valeur de la donnée initiale x_0 .

Soit $y_1, ..., y_4$ les quatre racines de f classées par ordre croissant, c_1, c_2 les deux racines non nulles de f' et d_1 et d_2 les deux racines de f''.

Montrer que pour tout $x_0 \in]-\infty, c_1[$,

$$\lim_{n \to +\infty} x_n = y_1.$$

Quelle est la limite de la suite x_n si $x_0 \in]c_2, +\infty[$?

- 5. QCM. Répondre par vrai ou faux, sans démonstration.
 - (a) Si $x_0 > 0$ alors x_n tend vers y_4 quand n tend vers $+\infty$.
 - (b) Il existe $\alpha > 0$ tel que pour tout $x_0 \in]y_2 \alpha, d_1[$, x_n tend vers y_2 quand n tend vers $+\infty$.
 - (c) Il existe $\alpha > 0$ tel que pour tout $x_0 \in]c_1, c_1 + \alpha[$, x_n tend vers y_4 quand n tend vers $+\infty$.
 - (d) Il existe un intervalle $]\alpha, \beta[$, $\alpha < \beta < 0$ tel que pour tout $x_0 \in]\alpha, \beta[$, x_n tend vers y_3 quand n tend vers $+\infty$.
 - (e) Il existe une infinité dénombrable d'intervalles disjoints $]\alpha_i,\beta_i[$, $i\in\mathbb{N}$, inclus dans $]c_1,y_2[$ tels que pour tout $x_0\in\bigcup_{i\in\mathbb{N}}]\alpha_i,\beta_i[$, x_n tend vers y_4 quand n tend vers $+\infty$.