Feuille de TP3

Soit g(x) la fonction définie sur l'intervalle [0,1] par :

$$g(x) = \mu x(1-x), \qquad \mu \in [0,4].$$
 (1)

On s'intéresse à la convergence de la méthode du point fixe, qui définit la suite x_n par :

$$x_{n+1} = g(x_n)$$

- 1. On suppose que $\mu < 1$
 - (a) Déterminer les points fixes de g.
 - (b) Pour toute valeur de x_0 , déterminer en utilisant les résultats du cours le comportement de la suite définie par l'algorithme du point fixe.
 - (c) Représenter l'allure des fonctions g(x) et x, et déterminer graphiquement, pour un x_0 fixé, les premières valeurs de la suite x_n .
 - (d) Implémenter une fonction scilab $PFLogistique1(x_0,nmax,eps)$ construisant la suite des itérés des points fixes, jusqu'à ce que |g(x)-x| < eps ou que le l'on ait atteint un nombre d'itérations supérieur ou égal à nmax. La fonction devra également récupérer toutes les valeurs de la suite dans un fichier texte.
 - (e) Pour quelques valeurs de μ et quelques valeurs de x_0 , lancer l'algorithme de point fixe.
 - (f) Implémenter une fonction scilab $PFLogistique2(x_0, nmax, eps)$ qui en plus de ce que fait la fonction PFLogistique1 représente la fonction g, la droite d'équation y=x et la suite des points sur un graphique.
- 2. On suppose que $1 \le \mu \le 2$
 - (a) Déterminer les points fixes de g.
 - (b) Les théorèmes du cours vous permettent-ils de conclure sur la convergence de la suite x_n ? Justifier votre réponse.
 - (c) Étudier théoriquement le comportement de la suite et étayer vos raisonnements par des simulations numériques.
- 3. On suppose que $2 < \mu \le 4$
 - (a) Déterminer les points fixes de g.
 - (b) Dans les cas $\mu = 2.5, 3.1, 3.49, 3.55, 3.57, 3.8, 3.9, 4$. Lancer l'algorithme de point fixe sur quelques valeurs de x_0 que vous aurez choisies. Récupérer toutes les suites obtenues dans des fichiers textes.
 - (c) En observant les suites obtenues essayez de formuler des hypothèses sur le comportement asymptotique de la suite x_n .